【NLP学习其二】什么是隐马尔可夫模型HMM?

概念

返利 m.cpa5.cn

隐马尔可夫模型描述的是两个时序序列联合分布p(x,y)的概率模型,其中包含了两个序列:

x序列外界可见(外界指的是观测者),称为观测序列(obsevation seuence)

y序列外界不可见,称为状态序列( state sequence)

如观测x为单词,状态y为词性,我们需要根据单词序列去猜测它们的词性。

隐马尔可夫模型之所以称为“隐”, 是因为从外界来看,状态序列(例如词性)隐藏不可见,是待求的因变量。

从这个角度来讲,人们也称状态为隐状态(hidden state ),而称观测为显状态( visible state )

为什么叫“马尔可夫模型”?是因为它满足马尔可夫假设

马尔可夫假设认为:每件事情的发生概率仅与前一件事有关

当有多个满足上述假设的事件形成串联时,就构成了马尔可夫链,在NLP的领域中就称为一个二元语法模型

注:

一元语法模型:
我考上大学只与考试当天的我有关,与前一天模拟考的我没有半毛钱关系

二元语法模型:
我考上大学与我前一天模拟考的我有关

书接上回

我们先做一些约定:

Qhidden为所有隐藏状态种类的合集,有N种

image-20210623160001996

例如我们之前定义了七个标签(https://www.cnblogs.com/DAYceng/p/14923065.html),那么N = 7

Vobs表示可观测的序列的合集(这里由汉字组成)

其中,V为单个的字,M为已知字的个数

image-20210623155742381

有一串自然语言文本O,共T个字,则观测合集可表示为
image-20210623161036151

而观测到的实体对应的实体标记就是隐状态合集I

image-20210623161201438

I与O一一对应并且长度一致

注:常称T为时刻,如上式中共有T个时刻(T个字)

HMM的假设

image-20210623161735456

图片出处:https://github.com/aespresso/a_journey_into_math_of_ml

假设一:

当前第$t$个隐状态(实体标签)只跟前一时刻的$t-1$隐状态(实体标签)有关,连续多个状态构成隐马尔可夫链I(隐状态合集),与除此之外的其他隐状态无关。
例如,上图中:蓝色的部分指的是$i_t$只与$i_{t-1}$有关,而与蓝色区域之外的所有内容都无关,而$P(i_{t}|i_{t-1})$指的是隐状态$i$$t-1$时刻转向t时刻的概率。

假设二:

观测独立的假设,我们上面说过,HMM模型中是由隐状态序列(实体标记)生成可观测状态(可读文本)的过程,观测独立假设是指在任意时刻观测$o_t$只依赖于当前时刻的隐状态i,与其他时刻的隐状态无关。
例如上图中:粉红色的部分指的是$i_{t+1}$只与$o_{t+1}$有关,跟粉红色区域之外的所有内容都无关。

至此,我们确定了状态与观测之间的关系。

接下来将介绍HMM用于模拟时序序列生成过程的三个要素(即HMM模型的三个参数):

  • 初始状态概率向量
  • 状态转移概率矩阵
  • 发射概率矩阵

初始状态概率向量

初始隐状态概率通常用π表示(不是圆周率!!

image-20210624151203517

该表达式的含义:

自然语言序列的第一个字$o_1$的实体标签是$q_i$的概率,即初始隐状态概率

而初始状态可表示如下:p(y1丨π),给定π,初始状态y1的取值分布就确定了

状态转移概率矩阵

初始状态确定之后,如何转移到初始状态的下一个状态呢?

还记得马尔可夫假设第一条吗?t+1时刻的状态只取决于t时刻状态

我们上面提到了$P(i_{t}|i_{t-1})$指的是隐状态$i$$t-1$时刻转向$t$时刻的概率

比如说我们现在实体标签一共有$7$种, 也就是$N=7$(注意$N$是所有可能的实体标签种类的集合), 也就是

image-20210624160308840

(注意我们实体标签编号从$0$算起)。

假设在$t-1$时刻任何一种实体标签都可以在$t$时刻转换为任何一种其他类型的实体标签

由排列组合不难得出以下结论:总共可能的转换的路径有$N^2$, 所以我们可以做一个$N*N$的矩阵来表示所有可能的隐状态转移概率.

矩阵

图片出处:https://github.com/aespresso/a_journey_into_math_of_ml

如图所示即为状态转移概率矩阵,设矩阵为$A$矩阵, 则$A_{ij}$表示矩阵中第i行第j列:

image-20210624154036507

该表达式的含义:

某时刻实体具有一个标签,而下一时刻该标签转换到某标签的概率,即$t$时刻实体标签为$q_i$, 而在$t+1$时刻实体标签转换到$q_j$的概率

发射概率矩阵

回到最初的问题,有了(隐)状态yt之后,如何确定观测xt的概率分布呢?

根据尔可夫假设第二条,任意时刻观测$o_t$只依赖于当前时刻的隐状态$i_t$, 也叫做发射概率,描述了隐状态生成观测结果的过程

设我们的字典里有$M$个字,

image-20210624160719405

(注意这里下标从0算起, 所以最后的下标是$M-1$, 一共有$M$种观测), 则每种实体标签(隐状态)可以生成$M$种不同的汉字(也就是观测), 这一过程可以用一个发射概率矩阵来表示, 它的维度是$N*M$

image-20210624155257137

图片出处:https://github.com/aespresso/a_journey_into_math_of_ml

设这个矩阵为$B$矩阵, 则$B_{jk}$表示矩阵中第$j$行第$k$列:

image-20210624155352274

该表达式的含义:

$t$时刻由实体标签(隐状态)$q_j$生成汉字(观测结果)$v_k$的概率.

至此,HMM的概念部分基本介绍完毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值