UVA 11796 Dog Distance 几何

       给两个点的序列,表示两只狗的运动路径,保证a,b同时出发同时到达终点,求运动过程中a,b的最远距离-最近距离。

       因为同时出发,同时到达,所以可以把两条路径的总长看做时间来做。更新最大最小值可以拆分成子过程来做,每次从当前点---某一个点到达拐点,这样每个子过程都是两个直线的运动,更新一下这段过程的最大最小值就行,之后当前点向后移动。

      

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
typedef double type;
using namespace std;
struct Point
{
    type x,y;
    Point(){}
    Point(type a,type b)
    {
        x=a;
        y=b;
    }
    void read()
    {
        scanf("%lf%lf",&x,&y);
    }
    void print()
    {
        printf("%.6lf %.6lf",x,y);
    }

};
typedef Point Vector;
Vector operator + (Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}
Vector operator - (Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}
Vector operator * (Vector A,type p)
{
    return Vector(A.x*p,A.y*p);
}
Vector operator / (Vector A,type p)
{
    return Vector(A.x/p,A.y/p);
}
bool operator < (const Point &a,const Point &b)
{
    return a.x<b.x || (a.x==b.x && a.y<b.y);
}
const double eps=1e-10;
int dcmp(double x)
{
    if (fabs(x)<eps) return 0;
    else return x<0?-1:1;
}
bool operator == (const Point& a,const Point b)
{
    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
}
//atan2(x,y) :向量(x,y)的极角,即从x轴正半轴旋转到该向量方向所需要的角度。
type Dot(Vector A,Vector B)
{
    return A.x*B.x+A.y*B.y;
}
type Cross(Vector A,Vector B)
{
    return A.x*B.y-A.y*B.x;
}
type Length(Vector A)
{
    return sqrt(Dot(A,A));
}
type Angle(Vector A,Vector B)
{
    return acos(Dot(A,B))/Length(A)/Length(B);
}

type Area2(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}
Vector Rotate(Vector A,double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

Vector Normal(Vector A)//单位法线,左转90度,长度归一
{
    double L=Length(A);
    return Vector(-A.y/L,A.x/L);
}

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}

double DistanceToLine(Point P,Point A,Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
    if (A==B) return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if (dcmp(Dot(v1,v2))<0) return Length(v2);
    else if (dcmp(Dot(v1,v3))>0) return Length(v3);
    else return fabs(Cross(v1,v2))/Length(v1);
}
Point GetLineProjection(Point P,Point A,Point B)//P在AB上的投影
{
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v));
}

bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
    c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}

bool OnSegment(Point p,Point a1,Point a2)
{
    return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
}

double ConvexPolygonArea(Point* p,int n)//多边形面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
double PolygonArea(Point* p,int n)//有向面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
Point a[120],b[120];
int na,nb,num,n;
int tt;
double lena,lenb;
double la[120],lb[120];
double minn,maxx;
void updata(Point p,Point a,Point b)
{
    minn=min(minn,DistanceToSegment(p,a,b));
    maxx=max(maxx,Length(p-a));
    maxx=max(maxx,Length(p-b));
}
int main()
{
//    freopen("in.txt","r",stdin);
    scanf("%d",&tt);
    for (int ii=1; ii<=tt; ii++)
    {
        scanf("%d%d",&na,&nb);
        lena=lenb=0.0;
        for (int i=0; i<na; i++)
        {
            a[i].read();
            if (i>0)
            {
                la[i]=Length(a[i]-a[i-1]);
                lena+=la[i];
            }
        }

        for (int i=0; i<nb; i++)
        {
            b[i].read();
            if (i>0)
            {
                lb[i]=Length(b[i]-b[i-1]);
                lenb+=lb[i];
            }
        }

        int pa,pb;
        pa=pb=1;
        double t;
        Point sa,sb;
        sa=a[0];
        sb=b[0];
        minn=999999999.9;
        maxx=0.0;
        while(pa<na && pb<nb)
        {
            double lla=Length(a[pa]-sa);
            double llb=Length(b[pb]-sb);

            t=min(lla/lena,llb/lenb);

            Vector va=(a[pa]-sa)/lla*lena*t;
            Vector vb=(b[pb]-sb)/llb*lenb*t;
            updata(sa,sb,sb+vb-va);
            sa=sa+va;
            sb=sb+vb;
            if (sa==a[pa]) pa++;
            if (sb==b[pb]) pb++;
        }
        printf("Case %d: %.0lf\n",ii,maxx-minn+eps);
    }
    return 0;
}


       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值