因为行迹是变化莫测的,所以很难从整体上求出最优解。但是行迹是由多个线段组成,而在两个线段上的行迹的最优解却是十分有规律的。那就是最远距离必在端点处,而最近距离必是一个关于时间的凹函数。因此我们可以将所有到达端点的时间点进行离散化,那么在相邻的两个时间点之间,两只狗一定分别在某两条线段上移动,因此可以利用参数方程得到具体的坐标与时间的关系。而针对这一时间段,我们只需要将端点带入便可求得局部的最远距离,我们只需要进行三分便可求得局部的最近距离。因此枚举所有时间段,分别维护全局最小值,最大值,最后做差输出即可。
一些细节:
就是两只狗的行进速度是不一样的,不妨设第一只狗的速度是1m/s,然后便可求出第二只狗的速度。然后在利用参数方程求端点时间和具体坐标时,别忘了在欧几里得距离后面除以这个常量v和在基向量后面乘以这个常量v。
三分法的eps我一开始设成了1e-2,觉得够呀,但是WA了,改成1e-3就过了。后来想了想,1e-2是时间的精度,而题目要求的是距离,所以可能会导致精度不够了。事实上根据题目要求以及自己设的第一只狗跑1m/s,那么另一只狗1秒钟最多可以跑70000米。那eps得设成1e-5才保险呀。或者直接对距离进行精度限制也行。
代码
#include<bits/stdc++.h>
#include<limits.h>
using namespace std;
const int maxn = 60;
struct Point
{
double x,y;
Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
Point Rea