沼泽鳄鱼(矩阵乘法)

版权声明:2333 https://blog.csdn.net/liangzihao1/article/details/51042771

ZJTSC 沼泽鳄鱼

Description

潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。
为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。 
豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。 
借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。 
现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。

Input

输入文件共M+ 2 + NFish行。 
第一行包含五个正整数N,M,Start,End和K,分别表示石墩数目、石桥数目、Start石墩和End石墩的编号和一条路线所需的单位时间。石墩用0到N–1的整数编号。 
第2到M+ 1行,给出石桥的相关信息。每行两个整数x和y,0≤ x, y ≤ N–1,表示这座石桥连接着编号为x和y的两座石墩。 
第M+ 2行是一个整数NFish,表示食人鱼的数目。 
第M+ 3到M + 2 + NFish行,每行给出一条食人鱼的相关信息。每行的第一个整数是T,T= 2,3或4,表示食人鱼的运动周期。接下来有T个数,表示一个周期内食人鱼的行进路线。 
如果T=2,接下来有2个数P0和P1,食人鱼从P0到P1,从P1到P0,……; 
如果T=3,接下来有3个数P0,P1和P2,食人鱼从P0到P1,从P1到P2,从P2到P0,……; 
如果T=4,接下来有4个数P0,P1,P2和P3,食人鱼从P0到P1,从P1到P2,从P2到P3,从P3到P0,……。 
豆豆出发的时候所有食人鱼都在自己路线上的P0位置,请放心,这个位置不会是Start石墩。

Output

输出路线的种数,因为这个数可能很大,你只要输出该数除以10000的余数

Sample Input

6 8 1 5 3
0 2
2 1
1 0
0 5
5 1
1 4
4 3
3 5
1
3 0 5 1

Sample Output

2
【样例说明】
时刻    0       1       2       3
鱼位置  0       5       1       0
路线一  1       2       0       5
路线二  1       4       3       5
 
 

【约定】 
1 ≤ N ≤ 50 
1 ≤ K ≤ 2,000,000,000
 
1 ≤ NFish ≤ 20

 

看上去像是个搜索。但是k实在太大,O(k)都会超时,但是石柱并不多(如果太多则矩阵会太大,爆内存),可以使用矩阵乘法。

鱼的周期只为2,3,4,所以最多12步一个周期。我们可以把每一时刻的邻接矩阵相乘,便可知道路径的数目。当a[i,k]>0,b[k,j]>0时,即i—>k和k—>j都有路径时c[I,j]才有路径,且等于实际i—j的路径。

A[i]代表第i个时刻的邻接矩阵,Ans[start,end]为所求。那么Ans=A[1]*A[2]*A[3]*…..*A[K]

我们知道12步一个周期,

A[1]*A[2]*……*A[12]=A[12p+1]*A[12p+2]*……*A[12p+12] (p为任意正整数)

那么

Ans=(A[1]*A[2]*……*A[12])k div 12 *(A[1]*A[2]*……*A[k mod 12])

 

我们可以用快速幂求出G k div 12(G=A[1]*A[2]*……*A[12]),时间复杂度就为O(log n)

 

代码:

·              const
·                p=10000;
·               
·              type
·                arr=array[1..50,1..50] of longint;
·               
·              var
·                n,m,s,e,t,w1,nf,x,y,i,j,k,u:longint;
·                a,c,d:arr;
·                f:array[1..12] of arr;
·                w:array[1..4] of longint;
·               
·              procedure cheng(a,b:arr);
·              var
·                i,j,k:longint;
·              begin
·                fillchar(c,sizeof(c),0);
·                for i:=1 to n do
·                  for j:=1 to n do
·                    for k:=1 to n do
·                      c[i,j]:=(c[i,j]+a[i,k]*b[k,j]) mod p;
·              end;
·               
·              procedure ksm(x:longint);
·              begin
·                if x=0 then exit;
·                ksm(x div 2);
·                cheng(c,c);
·                if x mod 2=1 then cheng(c,d);
·              end;
·               
·              begin
·                readln(n,m,s,e,t);
·                for i:=1 to m do
·                begin
·                  readln(x,y);
·                  a[x+1,y+1]:=1; (因为石柱是0~n-1,加1更好算)
·                  a[y+1,x+1]:=1;
·                end;
·                readln(nf);
·                for i:=1 to 12 do
·                  f[i]:=a;
·                for i:=1 to nf do
·                begin
·                  read(w1);
·                  for j:=1 to w1 do
·                    read(w[j]);
·                  for j:=1 to 12 do
·                  begin  
·                    u:=j mod w1+1;
·                    for k:=1 to n do
·                      f[j,k,w[u]+1]:=0;
·                  end;
·                end;
·                for i:=1 to n do
·                  c[i,i]:=1;
·                for i:=1 to 12 do
·                  cheng(c,f[i]);
·                d:=c;
·                fillchar(c,sizeof(c),0);
·                for i:=1 to n do
·                  c[i,i]:=1;
·                ksm(t div 12);
·                for i:=1 to t mod 12 do
·                  cheng(c,f[i]);
·                writeln(c[s+1,e+1]);
·              end.
·               

 


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页