BZOJ 3876([Ahoi2014]支线剧情-带下界的最小费用可行流)

题意:给定一张带边权DAG,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和。

设起点1,终点t=n+1
每条边容量下界为1

  • 有源有汇的图,终点连一条边到起点,容量为INF,变成无源无汇
  • 必须满流的边(u,v,w):建立超源S,超汇T,连接(S,v,w),(u,T,w),流量平衡就行

PoPoQQQ
blog.csdn.net/popoqqq/article/details/43024221

建图如下:
对于每一条边权为z的边x->y:
从S到y连一条费用为z,流量为1的边 代表这条边至少走一次
从x到y连一条费用为z,流量为INF的边 代表这条边除了至少走的一次之外还可以随便走
对于每个点x:
从x到T连一条费用为0,流量为x的出度的边
从x到1连一条费用为0,流量为INF的边,代替原图上的源和汇
直接跑费用流

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (600+10)
#define MAXM ((15400)*3+10)
#define MAXAi (35000)
#define eps (1e-3)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Cost_Flow  
{  
public:  
    int n,s,t;  
    int q[MAXM];  
    int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;  
    int cost[MAXM];  
    void addedge(int u,int v,int w,int c)    
    {    
        edge[++size]=v;    
        weight[size]=w;    
        cost[size]=c;    
        next[size]=pre[u];    
        pre[u]=size;    
    }    
    void addedge2(int u,int v,int w,int c){addedge(u,v,w,c),addedge(v,u,0,-c);}   
    bool b[MAXN];  
    int d[MAXN];  
    int pr[MAXN],ed[MAXN];  
    bool SPFA(int s,int t)    
    {    
        For(i,n) d[i]=INF,b[i]=0; 
        d[q[1]=s]=0;b[s]=1;    
        int head=1,tail=1;    
        while (head<=tail)    
        {    
            int now=q[head++];    
            Forp(now)    
            {    
                int &v=edge[p];    
                if (weight[p]&&d[now]+cost[p]<d[v])    
                {    
                    d[v]=d[now]+cost[p];    
                    if (!b[v]) b[v]=1,q[++tail]=v;    
                    pr[v]=now,ed[v]=p;    
                }    
            }    
            b[now]=0;    
        }    
        return d[t]!=INF;    
    }   
    int totcost;    

    int CostFlow(int s,int t)    
    {    
        while (SPFA(s,t))    
        {    
            int flow=INF;    
            for(int x=t;x^s;x=pr[x]) flow=min(flow,weight[ed[x]]); 
            totcost+=flow*d[t];    
            for(int x=t;x^s;x=pr[x]) weight[ed[x]]-=flow,weight[ed[x]^1]+=flow;         
        }    
        return totcost;    
    }    
    void mem(int n,int t)  
    {  
        (*this).n=n;  
        size=1;  
        totcost=0;  
        MEM(pre) MEM(next)   
    }  
}S1;  
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
int n;
int main()
{
//  freopen("bzoj3876.in","r",stdin);
//  freopen(".out","w",stdout);
    n=read();
    int s=1,t=n+1,S=n+2,T=n+3;
    S1.mem(T,T);
    const int inf = INF;
    For(i,n) {
        int m=read();
        S1.addedge2(i,t,inf,0);
        For(j,m) {
            int v=read(),c=read();
            S1.addedge2(i,v,inf,c);
            S1.addedge2(S,v,1,c);
            S1.addedge2(i,T,1,0);
        }
    }
    S1.addedge2(t,s,inf,0); //无源无汇,保证流量守恒
    cout<<S1.CostFlow(S,T)<<endl; 

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值