代数几何导引(德文版)【瑞士 马库斯·布罗德曼(Markus Brodmann)】的读书笔记,翻译和感想(2)

我是一个高中生今年即将去德国留学,出于德语学习和对于数学兴趣使然的原因之下,接触到了这本“起点较高的专著”(中文介绍的原文),博主自己还没有读完这本书并且德语水平不足,只是有边读边有所做笔记,自然错误也多,请各位专业科研人员以及大佬多多指教,必将修改,也非常欢迎大家来一起讨论书中的内容,很多博主自己的笔记也是来自于百度,谷歌等搜索引擎以及数学老师赠与的数学资料
 

上一篇的原文链接:代数几何导引(德文版)【瑞士 马库斯·布罗德曼(Markus Brodmann)】的读书笔记,翻译和感想(1)_nimomath666的博客-CSDN博客这是我的第一篇博客,写这篇博客的时候已经是2023年8月5日1点33分了,自然,短是毛病,让各位读者没有读尽兴,应当改正,希望我后面的博客越写越好,做到长短适中,实话讲,作为一个数学兴趣爱好者,并且处于高中阶段,看这本书确实起点过高了,所以也会去做一些低于这本书起点的笔记,如“同胚”这个概念,甚至是一些符号,也是做了相关的笔记,所以可能专业人士和科研人员看起来我的文章过于的细致(甚至可以说是杂碎),过于复杂和细节,愿各位谅解。https://blog.csdn.net/nimomath666/article/details/132114451?spm=1001.2014.3001.5501

德语原文:

代数几何导引(德文版)【瑞士 马库斯·布罗德曼(Markus Brodmann)】p2

代数几何导引(德文版)【瑞士 马库斯·布罗德曼(Markus Brodmann)】p3

Nullstellengebilde von Polynomen的剩余部分

 中文翻译:

1.代数的集合

多项式的根/解。代数几何的起始点是对于代数集合的研究,这指的是代数方程式系统的解(der Lösungsgebilde von algebraischen Gleichungssystemen,个人认为翻译成为方程亦可)。更加准确的阐述如下:我们观察一个多项式 f(z_{1},...,z_{n}) 在n个变量(Variablen)之中z_{1},...,z_{n}。我们称呼一个形为f(z_{1},...,z_{n})=0这样的为一个代数方程。一个系统这样的方程,譬如

(1.1)                    f_{i}(z_{1},...z_{n})=0(i\in A)

(A表示的是一个任何的指标集/索引集[eine beliebige Indexmenge],f_{i}总是一个多项式)人们称呼这个为一个代数方程系统(algebraisches Gleichungsystem)。我们把系统(1.1)的解集(Lösungsmenge)或者解(Lösungsgebilde)写作V(\left \{ f_{i}|i \in A \right \}),同样记做

(1.2)               V(\left \{ f_{i}|i \in A \right \}) = \left \{ (c_{1},...,c_{n})|f_{i}(c_{1},...,c_{n})=0,\forall i \in A \right \}

V(\left \{ f_{i}|i \in A \right \})被称为\left \{ f_{i}|i \in A \right \}零点解/根集或者零点解/根。最后出现的很多多项式,我们标记为

(1.2)'                   V(f_{1},...,f_{n}):=V(\left \{ f_{i}|i=1,...,n \right \})

(1.3)意见/评论:

A):众所周知线性代数的起点是线性方程系统的解的研究。正是一个如同(1.1)这样的系统,其中所有的多项式f_{i}来自次数为1(这边翻译存疑,原文如下, Es handet sich dabei genau um solche System(1.1),bei denen alle Polynome f_{i} vom Grad 1 sind.)这些系统的解释仿射空间(affine Räume)并且将会可以被用来帮助描绘完整/完备的线性代数。

对于所有在代数中的等式系统的关系会在本质上变得更加复杂。特别是有其他的线性情况——没有方法能够明确的去确定方程的解。这种情况下,定量的方法(或者是解的算法)涉及到了非线性的情况的解的定量研究,这种情况导致了不同的分类。

B)代数的一个非常重要的目标就是去研究代数等式/方程组f(z)=0在有唯一变量z的情况下。代数有(还是有可能性的,也就是f的次数是\leqslant 4的)确切的得到解/根的方法。数值计算(die Numerik)算是一种方法,来得到我们提前预设决定好精确度的代数方程式的解。这两点在代数几何中都不是很重要,因为它只对整个解的有限集合的陈述感兴趣。一个对于代数几何非常重要的问题就是关于一个确定解的多重性。这些问题显然针对上面所述的观点和数值计算的意义的。所以譬如数值计算的计算根的方法的趋同现象的行为(个人认为“收敛”更好一些,原文Konvergenzverhalten)对于多解和简单解是不同的。

读书笔记和讲解:

1.指标集(Indexmenge)

1):指标集:指标集对于实变函数是非常重要的。设一集合为I,若对于每个a \in I,都对应了一个集合Aa,则由这些Aa的全体构成的集合A称之为集合族,I就是该集合族的指标集。

如n ∈N,则定义Qn={x| x∈N,<n},则集合族为{Qn| n∈N},其指标集为N。即,在N中任取一个n,都可以得到一个集合Qn,那么这些Qn的集合称之为集合族。指标集就是帮助集合A索引标定所生成的集合。

实变函数:就是以实数作为自变量的函数,如y=x^{2} (x\in \mathbb{R})

2.数值计算(Numerik)

由于阿贝尔-鲁菲尼定理,在四次以上次数的方程并没有求根公式,也就是说,只有一到四次方程才有求根公式,而对于四次以上方程的求解一般使用数值计算来求出一个近似的解,其中较为出名的方法是牛顿迭代法。

1):牛顿迭代法(Newton's method)

由于多数方程(5次及以上)没有求根公式,很难求出精确解,甚至无解,才有这个牛顿迭代法,牛顿你迭代法使用f(x)的泰勒级数的前几项来寻找f(x)=0的解/根

该方法有很大的优点,方程在f(x)=0的单根附近具有平方收敛性,此时线性收敛,但通过一些方法可以变成超线性收敛。

2):线性收敛

对于收敛点列x_{k}\rightarrow x^{*},如果其Q因子Q_{1},满足0<Q_{1}<1,则称x_{k}是Q线性收敛于x^{*},如果Q_{1}\geqslant 1,则称x_{k}是Q收敛于x^{*}

如果收敛点列的x_{k}R因子R_{1},满足0<R_{1}<1,则称x_{k}是R线性收敛于x^{*},如果R_{1}=1则称x_{k}是R线性收敛

一个点列如果Q线性收敛就一定R线性收敛,但反之不然。

一般线性收敛指的是Q线性收敛,Q线性收敛等价于:

\lim_{k\rightarrow \infty }sup\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||} < 1

3):超线性收敛

对于收敛点列x_{k}\rightarrow x^{*},如果其Q因子Q_{1},满足Q_{1}=0,则称x_{k}是Q超线性收敛于x^{*},如果其R因子R_{1}满足R_{1}=0,则称x_{k}是超线性收敛于x^{*}

一个点列如果Q超线性收敛就一定R超线性收敛,但反之不然。

一般线性收敛指的是Q超线性收敛,Q超线性收敛等价于:

\lim_{k\rightarrow \infty }sup\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||} =0 

4):收敛因子

通俗点来说就是,为改变收敛速度而乘上去的函数。

在玉林师范学学院学报(自然科学)2018年第39卷第2期的《收敛因子在无穷积分计算中的运用》我找到了一下定义

定义1 为了改变无穷积分的收敛性,在被积函数中乘上一个函数,称这个函数为收敛银子.

定义2 在无穷积分中引入一个收敛银子,使含有参量的无穷积分满足积分号下可求导,交换积分的条件,进而求解无穷积分的方法称为收敛因子法.

5):Q和R线性收敛和超线性收敛

Q和R线性收敛和超线性收敛,实际上和是四个概念

Q-收敛因子R-收敛因子
线性收敛Q线性收敛R线性收敛
超线性收敛

Q超线性收敛

R超线性收敛

貌似百度上并没有关于Q和R线性收敛和超线性收敛的词条,所以我在《同济大学学报》1998年2月第26卷第1期上找到了《R收敛因子与Q收敛因子的关系》,其中有关于R和Q收敛因子的阐述

定义1  对于实数p\in [1,+\infty ),称

\lim_{k\rightarrow \infty }sup\frac{r_{k+1}}{r_{k}^{p}}

为序列\left \{ X_{k} \right \}的比值收敛因子,也称为Q-收敛因子

当p固定时,Q_{p}越小,则r_{k}\rightarrow 0越快.


定义2  对于实数p\in [1,+\infty ),称

R_{p}=\left\{\begin{matrix} lim_{k\rightarrow \infty }supr_{k}^{1/k}, if p=1 & \\ lim_{k\rightarrow \infty }supr_{k}^{1/p^{k}},if p>1 & \end{matrix}\right.

为序列\left \{ X_{k} \right \}的根收敛因子,也称为R-收敛因子.

如果\left \{ X_{k} \right \}收敛于X^{*},则当k充分大的时,总有r_{k}=||X_{k}-X^{*}||<1,所以总有0\leqslant R_{p}\leqslant1


定义3  如果Q_{1}=0,则称\left \{ X_{k} \right \}为Q-超线性收敛于X^{*},如果0<Q_{1}<1,则称\left \{ X_{k} \right \}为Q-线性收敛于X^{*},如果Q_{1}=1,则称\left \{ X_{k} \right \}为Q-次收敛于X^{*}


定义4  如果R_{1}=0,则称\left \{ X_{k} \right \}为R-超线性收敛于X^{*},如果0<R_{1}<1,则称\left \{ X_{k} \right \}为 R-线性收敛于X^{*},如果R_{1}=1,则称\left \{ X_{k} \right \}为R-次收敛于X^{*}

实际上他们的不同在于计算方式上的不同

总结:

可能确实拓展的有一点多了,有一些杂碎了,不过我认为多了解一些总归是好的

资料来源:

指标集_百度百科

超线性收敛_百度百科

收敛速度_百度百科

《R收敛因子与Q收敛因子的关系》,钱仲范,《同济大学学报》1998年2月第26卷第1期

《收敛因子在无穷积分计算中的运用》,梁志清,农海娇,严晓婷,叶玲伶,庞敏,玉林师范学学院学报(自然科学)2018年第39卷第2期

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值