AI实践营 Part 03:数据分析(以二手车价格预测为例)

二手车市场是一个充满机会和挑战的领域,预测二手车的交易价格不仅可以帮助买家和卖家做出更明智的决策,还能提升交易平台的竞争力。此次项目的目标是利用机器学习模型预测二手车的交易价格。我们将使用来自某交易平台的二手车交易记录数据,进行数据预处理、特征工程、模型训练和评估,最终生成一个预测结果提交文件。

数据集介绍
数据集包含超过40万条二手车交易记录,31个特征变量,包括15个匿名特征。为保证比赛的公平性,数据集被分为训练集、测试集A和测试集B。为了保护隐私,部分特征(如name、model、brand和regionCode)已被脱敏。

以下是数据集中的一些重要特征:

SaleID: 交易ID,唯一编码
regDate: 汽车注册日期
model: 车型编码
brand: 汽车品牌
bodyType: 车身类型
fuelType: 燃油类型
gearbox: 变速箱类型
power: 发动机功率
kilometer: 已行驶公里数
notRepairedDamage: 尚未修复的损坏
regionCode: 地区编码
seller: 销售方
offerType: 报价类型
creatDate: 汽车上线时间
price: 二手车交易价格(预测目标)

数据预处理


import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics impo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值