https://tensorflow.google.cn/api_docs/python/tf/layers/conv2d?hl=zh-cn
tensorflow手册链接
tf.layers.conv2d(
inputs,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None,
reuse=None
)
上面有值的都是默认值奥。
1.input 输入,一般是图像、矩阵、tensor。
2.定义滤波器个数,决定了输出的通道数filter=4表是卷积后会得到4个feature map。
3.kernel_size=4,表示卷积核大小为4*4。
4.strides=(1, 1),向右向下移动的步长均是1。
5.其中padding的两种类型SAME和VALID,same是卷积核滑动时,如果原图尺寸不足够,使用添加padding的方式。而valid是删掉不能被卷积