tensorflow中tf.layers.conv2d-Padding

本文详细介绍了TensorFlow中tf.layers.conv2d的Padding参数,包括SAME和VALID两种模式的工作原理。SAME模式会在卷积时根据需要添加padding以保持输出尺寸,而VALID模式则不添加padding,直接删除无法被卷积覆盖的部分。同时,文章还涵盖了conv2d的其他关键参数,如filter数量、kernel_size、strides、data_format、dilation_rate、激活函数、偏置项初始化等。
摘要由CSDN通过智能技术生成

https://tensorflow.google.cn/api_docs/python/tf/layers/conv2d?hl=zh-cn
tensorflow手册链接

tf.layers.conv2d(
    inputs,
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format='channels_last',
    dilation_rate=(1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    trainable=True,
    name=None,
    reuse=None
)

上面有值的都是默认值奥。
1.input 输入,一般是图像、矩阵、tensor。
2.定义滤波器个数,决定了输出的通道数filter=4表是卷积后会得到4个feature map。
3.kernel_size=4,表示卷积核大小为4*4。
4.strides=(1, 1),向右向下移动的步长均是1。
5.其中padding的两种类型SAME和VALID,same是卷积核滑动时,如果原图尺寸不足够,使用添加padding的方式。而valid是删掉不能被卷积

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值