OTSU算法对图像二值化

otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分。  所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。


设t为设定的阈值。

wo: 分开后  前景像素点数占图像的比例

uo:  分开后  前景像素点的平均灰度

w1:分开后  被景像素点数占图像的比例

u1:  分开后  被景像素点的平均灰度

u=w0*u0 + w1*u1 :图像总平均灰度


从L个灰度级遍历t,使得t为某个值的时候,前景和背景的方差最大, 则 这个 t  值便是我们要求得的阈值。

其中,方差的计算公式如下:

g=wo * (uo - u) * (uo - u) + w1 * (u1 - u) * (u1 - u)

[             此公式计算量较大,可以采用:      g = wo * w1 * (uo - u1) * (uo - u1)                ]




由于otsu算法是对图像的灰度级进行聚类,so  在执行otsu算法之前,需要计算该图像的灰度直方图。


按照上面的解释参考代码如下:

  1. #include "stdafx.h" 
  2. #include "stdio.h" 
  3. #include "cv.h" 
  4. #include "highgui.h" 
  5. #include "Math.h" 
  6.  
  7. int Otsu(IplImage* src); 
  8.  
  9. int _tmain(int argc, _TCHAR* argv[]) 
  10.     IplImage* img = cvLoadImage("c:\\aSa.jpg",0); 
  11.     IplImage* dst = cvCreateImage(cvGetSize(img), 8, 1); 
  12.     int threshold = Otsu(img); 
  13.  
  14.     cvThreshold(img, dst, threshold, 255, CV_THRESH_BINARY); 
  15.  
  16.  
  17.     cvNamedWindow( "img", 1 ); 
  18.     cvShowImage("img", dst); 
  19.  
  20.  
  21.     cvWaitKey(-1); 
  22.  
  23.     cvReleaseImage(&img); 
  24.     cvReleaseImage(&dst); 
  25.  
  26.     cvDestroyWindow( "dst" ); 
  27.     return 0; 
  28.  
  29. int Otsu(IplImage* src)   
  30. {   
  31.     int height=src->height;   
  32.     int width=src->width;       
  33.     long size = height * width;  
  34.  
  35.     //histogram   
  36.     float histogram[256] = {0};   
  37.     for(int m=0; m < height; m++) 
  38.     {   
  39.         unsigned char* p=(unsigned char*)src->imageData + src->widthStep * m;   
  40.         for(int n = 0; n < width; n++)  
  41.         {   
  42.             histogram[int(*p++)]++;   
  43.         }   
  44.     }   
  45.  
  46.     int threshold;     
  47.     long sum0 = 0, sum1 = 0; //存储前景的灰度总和和背景灰度总和 
  48.     long cnt0 = 0, cnt1 = 0; //前景的总个数和背景的总个数 
  49.     double w0 = 0, w1 = 0; //前景和背景所占整幅图像的比例 
  50.     double u0 = 0, u1 = 0;  //前景和背景的平均灰度 
  51.     double variance = 0; //最大类间方差 
  52.     int i, j; 
  53.     double u = 0; 
  54.     double maxVariance = 0; 
  55.     for(i = 1; i < 256; i++) //一次遍历每个像素 
  56.     {   
  57.         sum0 = 0; 
  58.         sum1 = 0;  
  59.         cnt0 = 0; 
  60.         cnt1 = 0; 
  61.         w0 = 0; 
  62.         w1 = 0; 
  63.         for(j = 0; j < i; j++) 
  64.         { 
  65.             cnt0 += histogram[j]; 
  66.             sum0 += j * histogram[j]; 
  67.         } 
  68.  
  69.         u0 = (double)sum0 /  cnt0;  
  70.         w0 = (double)cnt0 / size; 
  71.  
  72.         for(j = i ; j <= 255; j++) 
  73.         { 
  74.             cnt1 += histogram[j]; 
  75.             sum1 += j * histogram[j]; 
  76.         } 
  77.  
  78.         u1 = (double)sum1 / cnt1; 
  79.         w1 = 1 - w0; // (double)cnt1 / size; 
  80.  
  81.         u = u0 * w0 + u1 * w1; //图像的平均灰度 
  82.         printf("u = %f\n", u); 
  83.         //variance =  w0 * pow((u0 - u), 2) + w1 * pow((u1 - u), 2); 
  84.         variance =  w0 * w1 *  (u0 - u1) * (u0 - u1); 
  85.         if(variance > maxVariance)  
  86.         {   
  87.             maxVariance = variance;   
  88.             threshold = i;   
  89.         }  
  90.     }   
  91.  
  92.     printf("threshold = %d\n", threshold); 
  93.     return threshold;   
  94. }   
  95. 文章出处:http://blog.csdn.net/timidsmile/article/details/8493468
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值