椭圆一般方程(ABCDEF)转椭圆参数方程(长短轴,几何中心)

博客主要围绕椭圆方程转换展开,讲述将椭圆一般方程(含ABCDEF)转化为参数方程(涉及长短轴、中心)的相关内容,属于信息技术中数学计算与方程处理范畴。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



[原文] 一、为了更好、更准确的说明数学里的一些词句概念,在这里引进一个基,界,及相似形形概念。 1、什么是基?基是长相等且相对不变的同类几何图形的长,界:这里是界线,比如说零是正数和负数的界。界是指几何面两相等,几何体三同时相等的几何体。 ①长相等的长方形,包括正方形是同基长方形。长叫做这些长方形的同基长,同基里的正方形是长方形的界,而这些长方形与界正方形是相似面积。 ② 椭圆:长相等的椭圆是同基椭圆。 以短相等的椭圆,包括圆,也是同基椭圆,圆是两类椭圆的分界。长相等的椭圆的长叫同基长。同基里的圆面积(或周长)是椭圆面积(或周长)的面积(或周长)的界。 ③抛物面:长相等的抛物面是同基抛物面。两 相等的抛物面面积为同基抛物面的界。两相等抛 物面的弧长,为同基抛物面弧长界。 ④椭圆球:球体积是同基面椭圆球体积的体积界。 球表面积是同基面椭圆球面积的的曲面面积界。画出凸半球的同基面的球曲面面积界,(即三相等)以同基面为底面,连接上顶点,做内接圆锥形的界(三相等)以AB即2a为直径的圆面积;是凸半球和内接圆锥形的同基面S,S面为基面,AO=OB=OC=a,当OC<AO时,AO=a为基长,当OC>AO时,OC为基长,在计算弧长和凸球曲面面积的公式中,两相比时,长即基长,永远为分母。
椭圆曲线密码算法(Elliptic Curve Cryptography,ECC)是一种公钥加密算法,可以用于数据加密和数字签名等安全应用。以下是C++实现椭圆曲线密码算法的示例代码: ```cpp #include <iostream> #include <string> #include <vector> #include <NTL/ZZ.h> // NTL库提供的大数运算 using namespace std; using namespace NTL; // 定义椭圆曲线参数 ZZ p("0xfffffffffffffffffffffffffffffffeffffffffffffffff"); ZZ a("-0x3"); ZZ b("0x5"); ZZ n("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); // 定义椭圆曲线点结构体 struct ECPoint { ZZ x; ZZ y; }; // 判断两个大整数是否相等 bool isEqual(const ZZ& a, const ZZ& b) { return (a == b); } // 判断椭圆曲线点是否为无穷远点 bool isInfinity(const ECPoint& P) { return (P.x == 0 && P.y == 0); } // 判断椭圆曲线点是否在椭圆曲线上 bool isOnCurve(const ECPoint& P) { ZZ y2 = SqrMod(P.y, p); ZZ x3 = SqrMod(P.x, p) * P.x % p; ZZ ax = a * P.x % p; ZZ bmodp = b % p; ZZ x3_ax = (x3 + ax) % p; ZZ x3_ax_b = (x3_ax + bmodp) % p; return isEqual(y2, x3_ax_b); } // 计算两个椭圆曲线点之和 ECPoint add(const ECPoint& P, const ECPoint& Q) { if (isInfinity(P)) return Q; if (isInfinity(Q)) return P; if (isEqual(P.x, Q.x) && isEqual(P.y, Q.y)) { ZZ tmp1 = SqrMod(P.x, p); ZZ tmp2 = (tmp1 << 1) % p; ZZ tmp3 = (tmp2 + tmp1 + a) % p; ZZ tmp4 = (P.y << 1) % p; ZZ tmp5 = InvMod(tmp4, p); ZZ tmp6 = (tmp3 * tmp5) % p; ZZ x = (SqrMod(tmp6, p) - tmp2 - P.x - Q.x) % p; ZZ y = ((tmp6 * (P.x - x) % p) - P.y) % p; ECPoint R = {x, y}; return R; } else { ZZ tmp1 = (Q.y - P.y + p) % p; ZZ tmp2 = (Q.x - P.x + p) % p; ZZ tmp3 = InvMod(tmp2, p); ZZ tmp4 = (tmp1 * tmp3) % p; ZZ x = (SqrMod(tmp4, p) - P.x - Q.x + p + a) % p; ZZ y = ((tmp4 * (P.x - x) % p) - P.y + p) % p; ECPoint R = {x, y}; return R; } } // 计算椭圆曲线点的k倍 ECPoint multiply(const ECPoint& P, const ZZ& k) { ECPoint R = {0, 0}; ECPoint Q = P; for (int i = NumBits(k) - 1; i >= 0; i--) { R = add(R, R); if (bit(k, i) == 1) { R = add(R, Q); } } return R; } int main() { // 定义椭圆曲线点 ECPoint P = {0x4a96b5688ef573284664698968c38bb913cbfc82u, 0x23a628553168947d59dcc912042351377ac5fb32u}; // 定义私钥 ZZ d("0x1234567890abcdef"); // 计算公钥 ECPoint Q = multiply(P, d); // 输出公钥 cout << "Public key: (" << Q.x << ", " << Q.y << ")" << endl; return 0; } ``` 以上代码使用了NTL库提供的大数运算功能,可以在计算中使用任意大小的整数。在示例代码中,我们定义了椭圆曲线参数,包括模数p、系数a和b、点P以及阶n。接着,我们定义了椭圆曲线点结构体ECPoint,包含了点的x坐标和y坐标。我们实现了几个常用的椭圆曲线算法函数,包括判断两个大整数是否相等、判断椭圆曲线点是否为无穷远点、判断椭圆曲线点是否在椭圆曲线上、计算两个椭圆曲线点之和和计算椭圆曲线点的k倍。最后,我们使用示例代码计算了椭圆曲线公钥,并输出结果。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值