Matlab——常用函数的用法总结(部分直接摘自mathwork,持续更新)

Matlab——常用函数的用法总结(部分直接摘自mathwork,持续更新)

一、绘图篇

1.图像显示形式

①figure(创建图窗窗口)

figure:使用默认属性值创建一个新的图窗窗口。生成的图窗为当前图窗(当前图窗就是你下一次的画图命令就在当前图窗中画图)。

f = figure(___):返回 Figure 对象f。可使用 f 在创建图窗后查询或修改其属性。

figure(f):将Figure 对象 f 指定的图窗作为当前图窗,并将其显示在其他所有图窗的上面

figure(Name,Value):使用一个或多个名称-值对组参数修改图窗的属性
——指定可选的、以逗号分隔的 Name,Value 对组参数。Name 为参数名称,Value 为对应的值。Name 必须放在单引号 (’ ') 中。您可以指定多个名称-值对组参数,如 Name1,Value1,…,NameN,ValueN。(详见figure属性
—— figure(‘Name’,‘Results’) 将图窗的名称设置为 ‘Results’。
—— figure(‘Color’,‘white’) 创建具有白色背景的图窗。
——figure(‘position’,[500,200,500,500]);可绘制区域的位置和大小,指定为 [left,bottom,width,height] 形式的向量(一般不用指定窗口的位置与大小,使用默认即可),
left:主画面左边缘到窗口的内部左边缘的距离
bottom:主画面下边缘到窗口的内部下边缘的距离
width:左右内部边缘之间的距离
height:上下内部边缘之间的距离

一些颜色参数供参考在这里插入图片描述

②subplot(多个子图画在同一个图窗中)

subplot(m,n,p):将当前图窗划分为 m×n 网格,并在 p 指定的位置创建坐标区。第一个子图是第一行的第一列,第二个子图是第一行的第二列,依此类推。如果指定的位置已存在坐标区,则此命令会将该坐标区设为当前坐标区。
subplot(m,n,p,‘replace’):删除位置 p 处的现有坐标区并创建新坐标区。

2.频数图与直方图

①hist(不推荐hist,推荐使用histogram)

[N,X] = hist(Y,M):创建向量(行、列均可)Y 的频数直方图。它将区间[min(Y),max(Y)]等分为M 份(缺省时M 设定为10),N 返回M 个小区间的频数,X 返回M 个小区间的中点。

②histogram

histogram(X,nbins):创建向量(行、列均可)X 的频数直方图,nbins指定划分的份数

3.散点图

①scatter(绘制散点图)

scatter(x,y):在向量 x 和 y 指定的位置创建一个包含圆形的散点图。该类型的图形也称为气泡图。

scatter(x,y,sz):指定圆大小。要绘制大小相等的圆圈(默认sz=36),请将 sz 指定为标量。要绘制大小不等的圆,请将 sz 指定为长度等于 x 和 y 的长度的向量。

scatter(x,y,sz,c):指定圆颜色。要以相同的颜色绘制所有圆圈(默认c=[0,0,1]),请将 c 指定为颜色名称或 RGB 三元组。要使用不同的颜色,请将 c 指定为向量或由 RGB 三元组组成的三列矩阵。

scatter(___,mkr):指定标记类型。"___"是指可以将 ‘mkr’ 选项与前面语法中的任何输入参数组合一起使用。

一些"mkr"参数供参考
在这里插入图片描述

4.曲线绘制

①plot(二维曲线)

plot(X,Y):创建 Y 中数据对 X 中对应值的二维线图
——如果 X 和 Y 都是向量,则它们的长度必须相同。plot 函数绘制 Y 对 X 的图。
——如果 X 和 Y 均为矩阵,则它们的大小必须相同。plot 函数绘制 Y 的列对 X 的列的图。
——如果 X 或 Y 中的一个是向量而另一个是矩阵,则矩阵的各维中必须有一维与向量的长度相等。如果矩阵的行数等于向量长度,则 plot 函数绘制矩阵中的每一列对向量的图。如果矩阵的列数等于向量长度,则该函数绘制矩阵中的每一行对向量的图。如果矩阵为方阵,则该函数绘制每一列对向量的图。
——如果 X 或 Y 之一为标量,而另一个为标量或向量,则 plot 函数会绘制离散点。但是,要查看这些点,您必须指定标记符号,例如 plot(X,Y,‘o’)。

plot(X,Y,LineSpec):设置线型、标记符号和颜色。
——线型、标记和颜色,指定为包含符号的字符向量或字符串。符号可以按任意顺序显示。您不需要同时指定所有三个特征(线型、标记和颜色)。例如,如果忽略线型,只指定标记,则绘图只显示标记,不显示线条。
——示例: ‘:or’ 是带有圆形标记的红色点线,您可以按任意顺序颠倒它们,如:’:or’也可以写成’r:o’;
——线型、标记和颜色的相应符号表示
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

plot(X1,Y1,LineSpec1,…,Xn,Yn,LineSpecn):设置每个线条的线型、标记符号和颜色。
——您可以混用 X、Y、LineSpec 三元组和 X、Y 对组,例如:plot(X1,Y1,X2,Y2,LineSpec2,X3,Y3)。

plot(___,Name,Value) 使用一个或多个 Name,Value 对组参数指定线条属性。有关属性列表,请参阅 Line 属性。可以将此选项与前面语法中的任何输入参数组合一起使用。名称-值对组设置将应用于绘制的所有线条。
——名称-值对组参数:里面的属性内容太多了,若要使用请移步mathwork:https://ww2.mathworks.cn/help/matlab/ref/plot.html#namevaluepairarguments

5.图像附加说明

①title(添加标题)

title(txt):在当前坐标区中显示标题txt。

②xlabel(为 x 轴添加标签)

xlabel(txt):当前坐标区或图的 x 轴添加标签。重新发出 xlabel 命令会将旧标签替换为新标签。
xlabel(target,txt):为指定的目标对象添加标签。

③ylabel(为 y 轴添加标签)

ylabel(txt):当前坐标区或图的 y 轴添加标签。重新发出 ylabel 命令会将旧标签替换为新标签。
ylabel(target,txt):为指定的目标对象添加标签。

④legend(在坐标区上添加图例)

legend(label1,…,labelN):设置图例标签。以字符向量或字符串列表形式指定标签,例如 legend(‘Jan’,‘Feb’,‘Mar’)。

例:

x=[1,2];
y1=[3,4];
y2=[4,3];
plot(x1,y1,x1,y2);
legend('y = x+2','y = -x+5');

在这里插入图片描述

⑤suptitle(添加标题)

suptitle(txt):为图窗添加标题。
——当您调用函数subplot,将多个子图画在同一个图窗中,且希望在这图窗上添加标题,而不是在子图上添加标题时,suptitle函数就十分适用
在这里插入图片描述

二、矩阵的特殊操作篇

1.查找

①find

k = find(X):返回矩阵 X 中每个非零元素的序号(先列后行)组成的列向量

k = find(X,n):回矩阵 X 中n个非零元素的序号(先列后行)组成的列向量

k = find(X,n,‘last’):回矩阵 X 中n个非零元素的序号(先列后行)组成的列向量

2.容量

①length

length(X):返回 X 中最大数组维度的长度。对于向量,长度仅仅是元素数量。对于具有更多维度的数据,长度为 max(size(X))。空数组的长度为零。

三、数理统计篇

1.统计量

①mean(均值)

mean(X):返回X的均值
——如果 A 是向量,则 mean(A) 返回元素均值。
——如果 A 为矩阵,那么 mean(A) 返回包含每列均值的行向量。
——如果 A 是多维数组,则 mean(A) 沿大小不等于 1 的第一个数组维度计算,并将这些元素视为向量。此维度会变为 1,而所有其他维度的大小保持不变。

M = mean(A,‘all’):计算 A 的所有元素的均值。此语法适用于 MATLAB® R2018b 及更高版本。

②median(中位数)

M = median(A):返回 A 的中位数值。
——如果 A 为向量,则 median(A) 返回 A 的中位数值。
——如果 A 为非空矩阵,则 median(A) 将 A 的各列视为向量,并返回中位数值的行向量。
——如果 A 为 0×0 空矩阵,median(A) 返回 NaN。
——如果 A 为多维数组,则 median(A) 将沿大小不等于 1 的第一个数组维度的值视为向量。此维度的大小将变为 1,而所有其他维度的大小保持不变。

M = median(A,‘all’):计算 A 的所有元素的中位数。此语法适用于 MATLAB® R2018b 及更高版本。

③std(样本标准差)

S = std(A):返回 A 沿大小不等于 1 的第一个数组维度的元素的标准差。
——如果 A 是观测值的向量,则标准差为标量。
——如果 A 是一个列为随机变量且行为观测值的矩阵,则 S 是一个包含与每列对应的标准差的行向量。
——如果 A 是一个多维数组,则 std(A) 会沿大小不等于 1 的第一个数组维度计算,并将这些元素视为向量。此维度的大小将变为 1,而所有其他维度的大小保持不变。默认情况下,标准差按 N-1 实现归一化,其中 N 是观测值数量。

④var(样本方差)

V = var(A):返回 A 中沿大小不等于 1 的第一个数组维度的元素的方差。 ——如果 A 是一个观测值向量,则方差为标量。
——如果 A 是一个其各列为随机变量、其各行为观测值的矩阵,则 V 是一个包含对应于每列的方差的行向量。
——如果 A 是一个多维数组,则 var(A) 会将沿大小不等于 1 的第一个数组维度的值视为向量。此维度的大小将变为 1,而所有其他维度的大小保持不变。默认情况下,方差按观测值数量 -1 实现归一化。
——如果 A 是一个标量,则 var(A) 返回 0。
——如果 A 是一个 0×0 的空数组,则 var(A) 将返回 NaN。

⑤range(极差)

y=range (x):返回 x 中样本数据的最大值和最小值之间的差。
——如果 x 是一个向量,那么 range (x)就是 x 中值的范围。
——如果 x 是一个矩阵,那么 range (x)就是一个行向量,包含 x 中每一列的范围。
——如果 x 是一个多维数组,那么 range 沿着 x 的第一个非单点维度运算,把这些值当作向量。 这个维度的大小变成了1,而所有其他维度的大小保持不变。
——如果 x 是第一维为0的空数组,那么 range (x)返回一个大小与 x 相同的空数组。

⑥moment(中心距)

m = moment(X,order):返回 x 的中心矩,
——如果 x 是一个向量,那么矩(x,阶)返回一个标量值,即 x 中元素的 k 阶中心矩。
——如果 x 是一个矩阵,那么矩(x,阶)返回一个行向量,其中包含 x 中每一列的 k 阶中心矩。
——如果 x 是一个多维数组,那么矩(x,阶)沿 x 的第一个非单维运算。

⑦skewness(偏度)

y=skewness (x):返回 x 的样本偏斜度。如果 x 是一个向量,那么 skewness (x)返回一个标量值,即 x 中元素的偏斜度。如果 x 是一个矩阵,那么 skewness (x)返回一个行向量,其中包含 x 中每一列的样本偏斜度。如果 x 是一个多维数组,那么 skewness (x)沿 x 的第一个非单维运算。

⑧kurtosis(峰度)

k = kurtosis(X):返回 x 的样本峰度,如果 x 是一个向量,那么峰度(x)返回一个标量值,这个标量值就是 x 中元素的峰度。如果 x 是一个矩阵,那么峰度(x)返回一个行向量,它包含 x 中每一列的样本峰度。如果 x 是一个多维数组,那么峰度(x)沿 x 的第一个非单维数运算。

2.概率分布

①norm, χ 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值