动态规划

动态规划

递归到到动态规划的一般转化方法

递归函数有 n 个参数,就定义一个 n 维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值(在动态规划中成为“边界状态”)开始,逐步填充数组,相当于计算递归函数值的逆过程。

动态规划解题的一般思路

  • ①将原问题分解为子问题

把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决。

子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

  • ②确定状态

在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“”,就是这个“状态”所对应的子问题的解。

所有“状态”的集合,构成问题的“状态空间”,“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。
时 间 复 杂 度 = 状 态 的 数 目 ⋅ 计 算 每 个 状 态 所 需 时 间 时间复杂度=状态的数目\cdot 计算每个状态所需时间 =

用动态规划解题,经常碰到的情况是, K K K 个整型变量能构成一个状态。如果这 K K K 个整型变量的取值范围分别是 N 1 , N 2 , . . . N K N_1, N_2, ... N_K N1,N2,...NK,那么,我们就可以用一个 K K K 维的数组 a r r a y [ N 1 ] [ N 2 ] . . . [ N K ] array[N_1] [N_2] ... [N_K] array[N1][N2]...[NK] 来存储各个状态的“值”。这个“值”未必就是一个基本类型(如:整数、浮点数),可能是需要一个结构体才能表示的,那么 a r r a y array array 就可以是一个结构数组。一个“状态”下的“值”通常会是一个或多个子问题的解。

  • ③确定一些边界状态(初始状态)的值

动态规划的过程就是由“值”已知的状态去推算出“值”未知的状态,在最开始我们需要提供“边界状态”的“值”,从而启动递推的过程。

  • ④确定状态转移方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移,即如何从一个或多个“值”已知的“状态”,求出另一个“状态”的“值”(“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程

能用动态规划解决的问题的特点

  • 问题具有最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。
  • 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

动态规划相关题目

  • LeetCode

P10 正则表达式匹配
P300 最长上升子序列
P1143 最长公共子序列(LCS)

  • PJO
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值