【LeetCode】P1143 最长公共子序列(LCS)

P1143 最长公共子序列(LCS)

题目链接:1143. 最长公共子序列.

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。
示例:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000
  • 输入的字符串只含有小写英文字符。

题解

方法一:动态规划

链接:动态规划.

思路

  • ①将原问题分解为子问题

子问题:“求 t e x t 1 text1 text1 i i i 个字符形成的子串与 t e x t 2 text2 text2 j j j 个字符形成的子串的最长公共子序列的长度”。记 t e x t 1 text1 text1 t e x t 2 text2 text2 的长度分别为 m m m n n n,那么共有 m ⋅ n m\cdot n mn 个子问题,原问题的解即为最后一个子问题的解,即求 t e x t 1 text1 text1 m m m 个字符形成的子串与 t e x t 2 text2 text2 n n n 个字符形成的子串的最长公共子序列的长度。

  • ②确定状态

每个子问题中,与两个变量有关: i i i j j j,所以变量 i i i j j j 共同组成状态,定义 d p [ i ] [ j ] dp[i][j] dp[i][j] t e x t 1 text1 text1 i i i 个字符形成的子串与 t e x t 2 text2 text2 j j j 个字符形成的子串的最长公共子序列的长度, d p [ i ] [ j ] dp[i][j] dp[i][j] 即为状态 i i i j j j 对应的值。

  • ③确定一些边界状态(初始状态)的值

显然有, t e x t 1 text1 text1 0 0 0 个字符形成的子串与 t e x t 2 text2 text2 j j j 个字符形成的子串的最长公共子序列的长度为 0 0 0,同样的, t e x t 1 text1 text1 i i i 个字符形成的子串与 t e x t 2 text2 text2 0 0 0 个字符形成的子串的最长公共子序列的长度为 0 0 0,所以
d p [ i ] [ j ] = 0         ( i = 0 , 0 ⩽ j ⩽ n )   o r   ( j = 0 , 0 ⩽ i ⩽ m ) dp[i][j]=0\ \ \ \ \ \ \ (i=0,0\leqslant j\leqslant n) \ or \ (j=0,0\leqslant i\leqslant m) dp[i][j]=0       (i=00jn) or (j=00im)

  • ④确定状态转移方程

d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] + 1 t e x t 1 [ i − 1 ] = t e x t 2 [ j − 1 ] max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) t e x t 1 [ i − 1 ] ≠ t e x t 2 [ j − 1 ] dp[i][j] = \begin{cases} dp[i-1][j-1]+1 &text1[i-1]=text2[j-1] \\ \max(dp[i-1][j],dp[i][j-1]) &text1[i-1]\neq text2[j-1] \end{cases} dp[i][j]={dp[i1][j1]+1max(dp[i1][j]dp[i][j1])text1[i1]=text2[j1]text1[i1]=text2[j1]

显然,当 t e x t 1 [ i − 1 ] = t e x t 2 [ j − 1 ] text1[i-1]=text2[j-1] text1[i1]=text2[j1] 时,最长公共子序列长度加 1 1 1

但是,为什么当 t e x t 1 [ i − 1 ] ≠ t e x t 2 [ j − 1 ] text1[i-1]\neq text2[j-1] text1[i1]=text2[j1] 时,会得出 d p [ i ] [ j ] = max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=\max(dp[i-1][j],dp[i][j-1]) dp[i][j]=max(dp[i1][j]dp[i][j1]) 呢?

证明:当 t e x t 1 [ i − 1 ] ≠ t e x t 2 [ j − 1 ] text1[i-1]\neq text2[j-1] text1[i1]=text2[j1] 时, d p [ i ] [ j ] = max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=\max(dp[i-1][j],dp[i][j-1]) dp[i][j]=max(dp[i1][j]dp[i][j1])

证明:

由于 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串涵盖了 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串,所以 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的公共子序列的长度不小于 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的公共子序列的长度,所以 d p [ i ] [ j ] dp[i][j] dp[i][j] 不小于 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j]

假设: d p [ i ] [ j ] dp[i][j] dp[i][j] d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 都大

  • ① 比较 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串与 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串,前者只多了一个字符 t e x t 2 [ j − 1 ] text2[j-1] text2[j1],由假设可知 d p [ i ] [ j ] dp[i][j] dp[i][j] d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] 大,所以字符 t e x t 2 [ j − 1 ] text2[j-1] text2[j1] 一定位于 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的公共子序列中。
  • ② 比较 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串与 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串,前者只多了一个字符 t e x t 1 [ i − 1 ] text1[i-1] text1[i1],由假设可知 d p [ i ] [ j ] dp[i][j] dp[i][j] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 大,所以字符 t e x t 1 [ i − 1 ] text1[i-1] text1[i1] 一定位于 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的公共子序列中。


由①、②可知, t e x t 1 [ i − 1 ] text1[i-1] text1[i1] t e x t 2 [ j − 1 ] text2[j-1] text2[j1] 都位于 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的公共子序列中,而 t e x t 1 [ i − 1 ] text1[i-1] text1[i1] t e x t 1 text1 text1 i i i 个字符形成的子串中的最后一个字符, t e x t [ j − 1 ] text[j-1] text[j1] t e x t 2 text2 text2 j j j 个字符形成的子串中的最后一个字符,所以 t e x t 1 [ i − 1 ] = t e x t 2 [ j − 1 ] text1[i-1]=text2[j-1] text1[i1]=text2[j1],与 t e x t 1 [ i − 1 ] ≠ t e x t 2 [ j − 1 ] text1[i-1]\neq text2[j-1] text1[i1]=text2[j1] 矛盾,假设不成立,所以 d p [ i ] [ j ] dp[i][j] dp[i][j] 不比 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 都大

由于 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串都只是比 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串多一个字符,所以 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的最长公共子序列长度都只能等于 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1] 所对应的最长公共子序列长度,或者加 1 1 1,则 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 都只能等于 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1] 或者 d p [ i − 1 ] [ j − 1 ] + 1 dp[i-1][j-1]+1 dp[i1][j1]+1所以 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 要么相等,要么相差 1 1 1

有了上面的3个结论,可知 d p [ i ] [ j ] dp[i][j] dp[i][j] 至少等于 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 两者之一( d p [ i ] [ j − 1 ] = d p [ i − 1 ] [ j ] dp[i][j-1]=dp[i-1][j] dp[i][j1]=dp[i1][j] 时,三者相等),又由于 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串涵盖了 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的 t e x t 1 text1 text1 t e x t 2 text2 text2 的子串,所以 d p [ i ] [ j ] dp[i][j] dp[i][j] 所对应的最长公共子序列的长度应该为 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 所对应的最长公共子序列的长度中的较大值,则有: d p [ i ] [ j ] = max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=\max(dp[i-1][j],dp[i][j-1]) dp[i][j]=max(dp[i1][j]dp[i][j1])
得证。

t e x t 1 = “ a b c d e " , t e x t 2 = “ a c e ” text1 = “abcde", text2 = “ace” text1=abcde",text2=ace,我们按照状态转移方程,写出 d p dp dp 中的值:

在这里插入图片描述
算法

  • 参考代码1
class Solution {
public:
	int longestCommonSubsequence(string text1,string text2) {
		int len1=text1.size();
		int len2=text2.size();
		int** dp=new int*[len1+1];
		for(int i=0;i<len1+1;++i){
			dp[i]=new int[len2+1];
		}
		for(int i=0;i<len1+1;++i){
			dp[i][0]=0;
		}
		for(int i=0;i<len2+1;++i){
			dp[0][i]=0;
		}
		for(int i=1;i<len1+1;++i){
			for(int j=1;j<len2+1;++j){
				if(text1[i-1]==text2[j-1]){
					dp[i][j]=dp[i-1][j-1]+1;
				}
				else{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		return dp[len1][len2];
	}
};

上面的程序还可以使用滚动数组来对空间进行优化,我们可以知道计算出 d p [ i ] [ j ] dp[i][j] dp[i][j] 只需要知道 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1],所以我们可以考虑使用一个长度为 n + 1 n+1 n+1 的一维数组 n e w d p newdp newdp 来代替二维数组 d p dp dp,用 n e w d p [ j ] newdp[j] newdp[j] 来存储 d p [ i ] [ j ] dp[i][j] dp[i][j],在计算 d p [ i ] [ j ] dp[i][j] dp[i][j] 时(即为 n e w d p [ j ] newdp[j] newdp[j] 赋值时), d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1] 存储于 n e w d p [ j − 1 ] newdp[j-1] newdp[j1] 中, d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 存储于 n e w d p [ j ] newdp[j] newdp[j] 中,而 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1](原来也存储于 n e w d p [ j − 1 ] newdp[j-1] newdp[j1] 中)已经被更新为 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1],所以我们需要一个变量 t e m p temp temp 来记录 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1]

在这里插入图片描述
其实还可以继续优化空间,将 n e w d p newdp newdp 设置为一个长度为 min ⁡ ( m , n ) + 1 \min(m,n)+1 min(m,n)+1 的一维数组。

  • 参考代码2
class Solution {
public:
	int longestCommonSubsequence(string text1,string text2) {
		int len1=text1.size();
		int len2=text2.size();
		if(len2>len1){
			return longestCommonSubsequence(text2,text1);
		}
		int* dp=new int[len2+1];
		int temp;
		for(int i=0;i<len2+1;++i){
			dp[i]=0;
		}
		for(int i=1;i<len1+1;++i){
			temp=dp[0];
			for(int j=1;j<len2+1;++j){
				if(text1[i-1]==text2[j-1]){
					int tp=temp;
					temp=dp[j];
					dp[j]=tp+1;
				}
				else{
					temp=dp[j];
					dp[j]=max(dp[j],dp[j-1]);
				}	
			}
		}
		return dp[len2];
	}
};

复杂度分析

假设字符串 t e x t 1 text1 text1 的长度为 m m m,字符串 t e x t 2 text2 text2 的长度为 n n n

  • 时间复杂度: O ( m ⋅ n ) O(m\cdot n) O(mn),因为动态规划中状态的数目为 m ⋅ n m\cdot n mn,在计算每个状态时所需的时间为一个与 m m m n n n 均无关的常量,由动态规划解题的时间复杂度计算公式:
    时 间 复 杂 度 = 状 态 的 数 目 ⋅ 计 算 每 个 状 态 所 需 时 间 时间复杂度=状态的数目⋅计算每个状态所需时间 =所以得到时间复杂度 O ( m ⋅ n ) O(m\cdot n) O(mn)
  • 空间复杂度:
    • 参考代码1的空间复杂度为 O ( m ⋅ n ) O(m\cdot n) O(mn),需要一个 ( m + 1 ) ⋅ ( n + 1 ) (m+1)\cdot (n+1) (m+1)(n+1) 的二维数组 d p dp dp 来存储各个状态的值。
    • 参考代码2的空间复杂度为 O ( min ⁡ ( m , n ) ) O(\min(m,n)) O(min(m,n)),使用滚动数组,需要一个长度为 min ⁡ ( m , n ) + 1 \min(m,n)+1 min(m,n)+1 的一维滚动数组。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值