pytorch 数据加载和处理

# PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性。
from __future__ import print_function, division
import os
import torch
import pandas as pd #用于更容易地进行csv解析
from skimage import io, transform #用于图像的IO和变换
import numpy as np 
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils

# 忽略警告
import warnings
warnings.filterwarnings("ignore")
plt.ion() # interactive mode

# 数据集是按如下规则打包成的csv文件
# image_name,part_0_x,part_0_y,part_1_x,part_1_y,part_2_x, ... ,part_67_x,part_67_y
# 0805personali01.jpg,27,83,27,98, ... 84,134
# 1084239450_e76e00b7e7.jpg,70,236,71,257, ... ,128,312

# 读取数据集
# 将csv中的标注点数据读入(N,2)数组中,其中N是特征点的数量。读取数据代码如下:
landmarks_frame = pd.read_csv('data/faces/face_landmarks.csv')
n = 65
img_name = landmarks_frame.iloc[n, 0] #第65行的图片的名字
# landmarks = landmarks_frame.iloc[n, 1:].as_matrix()
landmarks = landmarks_frame.iloc[n, 1:].values #第65行的图片的标注
landmarks = landmarks.astype('float').reshape(-1, 2)
print('Image name: {}'.format(img_name))
print('Landmarks shape: {}'.format(landmarks.shape))
print('First 4 Landmarks: {}'.format(landmarks[:4]))

# 写一个简单的函数来展示一张图片和它对应的标注点作为例子。
def show_landmarks(image, landmarks):
    """显示带有地标的图片"""
    plt.imshow(image)
    plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
    plt.pause(0.001) # pause a bit so that plots are updated
plt.figure()
show_landmarks(io.imread(os.path.join('data/faces/', img_name)), landmarks)
plt.show()

# 数据集类
# torch.utils.data.Dataset是表示数据集的抽象类,因此自定义数据集应继承Dataset并覆盖以下方法 * __len__ 实现 len(dataset) 返还数据集的尺寸。 * __getitem__用来获取一些索引数据,例如 dataset[i] 中的(i)。
# 建立数据集类
# 我们的数据样本将按这样一个字典{'image': image, 'landmarks': landmarks}组织。 我们的数据集类将添加一个可选参数transform 以方便对样本进行预处理。下一节我们会看到什么时候需要用到transform参数。 __init__方法如下图所示:
class FaceLandmarksDataset(Dataset):
    """面部标记数据集."""
    def __init__(self, csv_file, root_dir, transform=None):
        """
        csv_file(string):带注释的csv文件的路径。
        root_dir(string):包含所有图像的目录。
        transform(callable, optional):一个样本上的可用的可选变换
        """
        self.landmarks_frame = pd.read_csv(csv_file)
        self.root_dir = root_dir
        self.transform = transform
    def __len__(self):
        return len(self.landmarks_frame)
    def __getitem__(self, idx):
        img_name = os.path.join(self.root_dir, self.landmarks_frame.iloc[idx, 0])
        image = io.imread(img_name)
        landmarks = self.landmarks_frame.iloc[idx, 1:]
        landmarks = np.array([landmarks])
        landmarks = landmarks.astype('float').reshape(-1, 2)
        sample = {'image': image, 'landmarks': landmarks}
        if self.transform:
            sample = self.transform(sample)
        return sample

# 数据可视化
# 实例化这个类并遍历数据样本。我们将会打印出前四个例子的尺寸并展示标注的特征点。 代码如下图所示:
face_dataset = FaceLandmarksDataset(csv_file = 'data/faces/face_landmarks.csv',
                                    root_dir = 'data/faces/')
fig = plt.figure()
for i in range(len(face_dataset)):
    sample = face_dataset[i]
    print(i, sample['image'].shape, sample['landmarks'].shape)
    ax = plt.subplot(1, 4, i+1)
    plt.tight_layout()
    ax.set_title('Sample #{}'.format(i))
    ax.axis('off')
    show_landmarks(**sample)
    if i==3:
        plt.show()
        break

# 数据变换
# 通过上面的例子我们会发现图片并不是同样的尺寸。绝大多数神经网络都假定图片的尺寸相同。因此我们需要做一些预处理。让我们创建三个转换: * Rescale:缩放图片 * RandomCrop:对图片进行随机裁剪。这是一种数据增强操作 * ToTensor:把numpy格式图片转为torch格式图片 (我们需要交换坐标轴).
# 我们会把它们写成可调用的类的形式而不是简单的函数,这样就不需要每次调用时传递一遍参数。我们只需要实现__call__方法,必 要的时候实现 __init__方法。我们可以这样调用这些转换:
# tsfm = Transform(params)
# transformed_sample = tsfm(sample)
# 观察下面这些转换是如何应用在图像和标签上的。
class Rescale(object):
    """将样本中的图像重新缩放到给定大小。.

    Args:
        output_size(tuple或int):所需的输出大小。 如果是元组,则输出为
         与output_size匹配。 如果是int,则匹配较小的图像边缘到output_size保持纵横比相同。
    """
    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size
    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']
        h, w = image.shape[:2]
        if isinstance(self.output_size, int):
            if h>w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size
        new_h, new_w = int(new_h), int(new_w)
        img = transform.resize(image, (new_h, new_w))
        # h and w are swapped for landmarks because for images,
        # x and y axes are axis 1 and 0 respectively
        landmarks = landmarks * [new_w / w, new_h / h]
        return {'image': img, 'landmarks': landmarks}

class RandomCrop(object):
    """随机裁剪样本中的图像.

    Args:
       output_size(tuple或int):所需的输出大小。 如果是int,方形裁剪是。         
    """
    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size
    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']
        h, w = image.shape[:2]
        new_h, new_w = self.output_size
        top = np.random.randint(0, h - new_h)
        left = np.random.randint(0, w - new_w)
        image = image[top: top + new_h,
                      left: left + new_w]
        landmarks = landmarks - [left, top]
        return {'image': image, 'landmarks': landmarks}

class ToTensor(object):
    """将样本中的ndarrays转换为Tensors."""
    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']
        # 交换颜色轴因为
        # numpy包的图片是: H * W * C
        # torch包的图片是: C * H * W
        image = image.transpose((2, 0, 1))
        return {'image': torch.from_numpy(image),
                'landmarks': torch.from_numpy(landmarks)}

# 组合转换
# 接下来把这些转换应用到一个例子上。
# 我们想要把图像的短边调整为256,然后随机裁剪(randomcrop)为224大小的正方形。也就是说,我们打算组合一个Rescale和 RandomCrop的变换。 我们可以调用一个简单的类 torchvision.transforms.Compose来实现这一操作。具体实现如下
scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),
                               RandomCrop(224)])
# 在样本上应用上述的每个变换。
fig = plt.figure()
sample = face_dataset[65]
for i, tsfrm in enumerate([scale, crop, composed]):
    transformed_sample = tsfrm(sample)
    ax = plt.subplot(1, 3, i + 1)
    plt.tight_layout()
    ax.set_title(type(tsfrm).__name__)
    show_landmarks(**transformed_sample)
plt.show()

# 迭代数据集
# 让我们把这些整合起来以创建一个带组合转换的数据集。总结一下,每次这个数据集被采样时: * 及时地从文件中读取图片 * 对读取的图片应用转换 * 由于其中一步操作是随机的 (randomcrop) , 数据被增强了
# 可以像之前那样使用for i in range循环来对所有创建的数据集执行同样的操作。
transformed_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
                                           root_dir='data/faces/',
                                           transform=transforms.Compose([
                                               Rescale(256),
                                               RandomCrop(224),
                                               ToTensor()
                                           ]))
for i in range(len(transformed_dataset)):
    sample = transformed_dataset[i]
    print(i, sample['image'].size(), sample['landmarks'].size())
    if i == 3:
        break

# 但是,对所有数据集简单的使用for循环牺牲了许多功能,尤其是: * 批量处理数据 * 打乱数据 * 使用多线程multiprocessingworker 并行加载数据。
# torch.utils.data.DataLoader是一个提供上述所有这些功能的迭代器。下面使用的参数必须是清楚的。一个值得关注的参数是collate_fn, 可以通过它来决定如何对数据进行批处理。但是绝大多数情况下默认值就能运行良好
dataloader = DataLoader(transformed_dataset, batch_size=4,
                        shuffle=True, num_workers=4)
# 辅助功能:显示批次
def show_landmarks_batch(sample_batched):
    """Show image with landmarks for a batch of samples."""
    images_batch, landmarks_batch = \
            sample_batched['image'], sample_batched['landmarks']
    batch_size = len(images_batch)
    im_size = images_batch.size(2)
    grid_border_size = 2
    grid = utils.make_grid(images_batch) #make_grid的作用是将若干幅图像拼成一幅图像
    plt.imshow(grid.numpy().transpose((1, 2, 0)))
    for i in range(batch_size):
        plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size,
                    landmarks_batch[i, :, 1].numpy() + grid_border_size,
                    s=10, marker='.', c='r')
        plt.title('Batch from dataloader')
    for i_batch, sample_batched in enumerate(dataloader):
        print(i_batch, sample_batched['image'].size(),
              sample_batched['landmarks'].size())
        # 观察第4批次并停止。
        if i_batch == 3:
            plt.figure()
            show_landmarks_batch(sample_batched)
            plt.axis('off')
            plt.ioff()
            plt.show()
            break
    
        
# 后记:torchvision
在这篇教程中我们学习了如何构造和使用数据集类(datasets),转换(transforms)和数据加载器(dataloader)。
torchvision包提供了 常用的数据集类(datasets)和转换(transforms)。你可能不需要自己构造这些类。
torchvision中还有一个更常用的数据集类ImageFolder。 它假定了数据集是以如下方式构造的:
root/ants/xxx.png
root/ants/xxy.jpeg
root/ants/xxz.png
.
.
.
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png
# 其中'ants’,bees’等是分类标签。在PIL.Image中你也可以使用类似的转换(transforms)例如RandomHorizontalFlip,Scale。利 用这些你可以按如下的方式创建一个数据加载器(dataloader) :
import torch
from torchvision import transforms, datasets

data_transform = transforms.Compose([
        transforms.RandomSizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
hymenoptera_dataset = datasets.ImageFolder(root='hymenoptera_data/train',
                                           transform=data_transform)
dataset_loader = torch.utils.data.DataLoader(hymenoptera_dataset,
                                             batch_size=4, shuffle=True,
                                             num_workers=4)


结果:
Image name: person-7.jpg
Landmarks shape: (68, 2)
First 4 Landmarks: [[32. 65.]
 [33. 76.]
 [34. 86.]
 [34. 97.]]
0 (324, 215, 3) (68, 2)
1 (500, 333, 3) (68, 2)
2 (250, 258, 3) (68, 2)
3 (434, 290, 3) (68, 2)


参考网址:http://www.pytorch123.com/ThirdSection/DataLoding/

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用PyTorch进行处理数据的一般步骤如下: 1. 导入必要的PyTorch模块,例如`torch`、`torchvision`等。 2. 准备数据集。PyTorch支持多种数据集格式,包括自定义数据集、ImageNet、CIFAR等常见数据集。您可以使用`torchvision.datasets`模块中的`ImageFolder`、`CIFAR10`等类,或编写自己的数据集类。 3. 使用`transforms`模块对数据进行预处理。`transforms`模块提供了多种数据处理方法,例如缩放、裁剪、旋转、归一化等。您可以使用`transforms.Compose`将多个预处理方法组合起来。 4. 使用`DataLoader`数据。`DataLoader`可以将数据集按照batch size划分为多个小批量,并提供多线程数据数据打乱等功能。 下面是一个简单的例子,假设您要CIFAR10数据集: ```python import torch import torchvision import torchvision.transforms as transforms # 定义预处理方法 transform = transforms.Compose( [transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=2) ``` 在这个例子中,我们使用了`transforms.Resize`将图像缩放到32x32大小,使用`transforms.ToTensor`将图像转换为PyTorch张量格式,使用`transforms.Normalize`对图像进行归一化处理。然后使用`torchvision.datasets.CIFAR10`CIFAR10数据集,并使用`torch.utils.data.DataLoader`将数据集划分为小批量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值