题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3435
题目大意:
给你一个图,求出二分图最优匹配,权值最小。可能有重边(保留重边中权值最小的即可)。
解题思路:
经典思路: 1.负数
2.大数-边权值
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 1010
#define MAXN 1<<28
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int map[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = 1; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - map[u][i];
if(temp == 0) //相等子图
{
visity[i] = true;
if(match[i] == -1 || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM_perfect_match()
{
int temp;
CLR(ly, 0);
for(int i = 1; i <= n; ++i) //定标初始化
lx[i] = -MAXN;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
lx[i] = max(lx[i], map[i][j]);
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
slack[j] = MAXN;
while(1)
{
CLR(visitx, 0);
CLR(visity, 0);
if(Hungary(i))
break;
else
{
temp = MAXN;
for(int j = 1; j <= n; ++j)
if(!visity[j])
temp = min(temp, slack[j]);
for(int j = 1; j <= n; ++j)
{
if(visitx[j])
lx[j] -= temp;
if(visity[j])
ly[j] += temp;
else
slack[j] -= temp;
}
}
}
}
}
int main()
{
int ncase, T = 1;
int edge;
int start, end, cost;
int answer;
bool perfect;
scanf("%d", &ncase);
while(ncase--)
{
CLR(match, -1);
answer = 0;
perfect = true;
scanf("%d%d", &n, &edge);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
map[i][j] = -MAXN;
for(int i = 0; i < edge; ++i)
{
scanf("%d%d%d", &start, &end, &cost);
if( -cost > map[start][end])
map[start][end] = map[end][start] = -cost;
}
KM_perfect_match();
for(int i = 1; i <= n; ++i)
{
if(match[i] == - 1 || map[ match[i] ][i] == -MAXN)
{
perfect = false;
break;
}
answer += map[ match[i] ][i];
}
if(perfect)
printf("Case %d: %d\n", T++, -answer);
else
printf("Case %d: NO\n", T++);
}
return 0;
}