Hdu 3435(二分图最优匹配+KM算法)

Hdu 3435

 

(1)题意:

在一个无向图中寻找一个哈密顿图,并且使这张哈密顿图的权值之和最小。

如果不存在,输出“NO”。

 

(2)思路:

将点分为入点,出点,然后建立二分图,求出最小匹配即可。

 

(3)代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 1005;
const int INF = 1e9+10;
int mp[maxn][maxn],vx[maxn],vy[maxn],lx[maxn],ly[maxn],cha,n,m,pre[maxn];
int MIN(int x,int y){
	return x<y?x:y;
}
int MAX(int x,int y){
	return x>y?x:y;
}
bool dfs(int u){
	vx[u] = 1;
	for(int v=1;v<=n;v++)
	if(!vy[v]&&mp[u][v]==lx[u]+ly[v]){
		vy[v] = 1;
		if(pre[v]==-1||dfs(pre[v])){
			pre[v] = u;
			return true;
		}
	}
	else if(!vy[v]){
		cha = MIN(cha,lx[u]+ly[v]-mp[u][v]);
	}
	return false;
}
int km(){
	memset(ly,0,sizeof(ly));
	for(int i=1;i<=n;i++){
		lx[i] = mp[i][1];
		for(int j=2;j<=n;j++) lx[i] = MAX(lx[i],mp[i][j]);
	}
	memset(pre,-1,sizeof(pre));
	for(int i=1;i<=n;i++){
		while(true){
			for(int j=1;j<=n;j++) vx[j] = vy[j] = 0;
			cha = INF;
			if(dfs(i)) break;
			for(int j=1;j<=n;j++){
				if(vx[j]==1) lx[j] -= cha;
				if(vy[j]==1) ly[j] += cha;
			}
		}
	}
	int ans = 0;
	for(int i=1;i<=n;i++)
	if(mp[pre[i]][i]!=-INF) ans+=mp[pre[i]][i];
	else return -1;
	return -ans;
}
int main(void){
	int T,pt = 1;
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++) mp[i][j] = -INF;
		for(int i=1;i<=m;i++){
			int x,y,z;
			scanf("%d%d%d",&x,&y,&z);
			mp[x][y] = mp[y][x] = MAX(-z,mp[x][y]);
		}
		printf("Case %d: ",pt++);
		int ans = km();
		if(ans==-1) printf("NO\n");
		else printf("%d\n",ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值