Hdu 3435
(1)题意:
在一个无向图中寻找一个哈密顿图,并且使这张哈密顿图的权值之和最小。
如果不存在,输出“NO”。
(2)思路:
将点分为入点,出点,然后建立二分图,求出最小匹配即可。
(3)代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 1005;
const int INF = 1e9+10;
int mp[maxn][maxn],vx[maxn],vy[maxn],lx[maxn],ly[maxn],cha,n,m,pre[maxn];
int MIN(int x,int y){
return x<y?x:y;
}
int MAX(int x,int y){
return x>y?x:y;
}
bool dfs(int u){
vx[u] = 1;
for(int v=1;v<=n;v++)
if(!vy[v]&&mp[u][v]==lx[u]+ly[v]){
vy[v] = 1;
if(pre[v]==-1||dfs(pre[v])){
pre[v] = u;
return true;
}
}
else if(!vy[v]){
cha = MIN(cha,lx[u]+ly[v]-mp[u][v]);
}
return false;
}
int km(){
memset(ly,0,sizeof(ly));
for(int i=1;i<=n;i++){
lx[i] = mp[i][1];
for(int j=2;j<=n;j++) lx[i] = MAX(lx[i],mp[i][j]);
}
memset(pre,-1,sizeof(pre));
for(int i=1;i<=n;i++){
while(true){
for(int j=1;j<=n;j++) vx[j] = vy[j] = 0;
cha = INF;
if(dfs(i)) break;
for(int j=1;j<=n;j++){
if(vx[j]==1) lx[j] -= cha;
if(vy[j]==1) ly[j] += cha;
}
}
}
int ans = 0;
for(int i=1;i<=n;i++)
if(mp[pre[i]][i]!=-INF) ans+=mp[pre[i]][i];
else return -1;
return -ans;
}
int main(void){
int T,pt = 1;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) mp[i][j] = -INF;
for(int i=1;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
mp[x][y] = mp[y][x] = MAX(-z,mp[x][y]);
}
printf("Case %d: ",pt++);
int ans = km();
if(ans==-1) printf("NO\n");
else printf("%d\n",ans);
}
return 0;
}