题目大意:
现在有1所学校,N个学生,M个公寓,还有一个R值,代表学生对该公寓的满意度,如果为正数,越高表示越喜欢住在该所公寓,0表示不喜欢也不讨厌(意思就是可以住),如果为负数则代表不喜欢住,也不能住(要不小心起义~)。现在校长想让所有学生的满意度最高,而且学生跟公寓是一一对应的,另外,学生也不能入住那些没对公寓进行评价的。
求出最大值。
解题思路:
这道题也是二分图最优匹配,但是有了一定的提高,因为要处理需要的细节问题。
我们可以把学生和公寓当做二分图的两个部分,然后进行分析:
1.首先,N和M不相等。这点我们可以进行剪枝,N小于M是一定不能进行完备匹配的。所以我们可以用一个变量countm记录用到的公寓的个数,如果小于学生的数量,就不需要进行最优匹配了。直接输出-1即可。
2.如果公寓数目大于等于学生数目,则可以进行最优匹配。需要注意的是满意度为负数的不能入住,遇到满意度为负数不能加入这条边。
3.判断是否存在完备匹配。因为M和N不相等,所以我们不能用前面那种方法判断。而是需要累加已经匹配的定点的数目,如果匹配数=学生数,则存在完备匹配,反之不存在。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 510
#define MAXN 1<<28
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int map[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int usem[N];
int n, m, edge;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = 0; i < m; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - map[u][i];
if(temp == 0) //属于相等子图
{
visity[i] = true;
if(match[i] == - 1 || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //x在交错树,y不在交错树,更新d
slack[i] = min(slack[i], temp);
}
}
return false;
}
bool KM_perfect_match()
{
int temp;
CLR(lx, 0); //初始化顶标
CLR(ly, 0);
for(int i = 0; i < n; ++i)
for(int j = 0; j < m; ++j)
lx[i] = max(lx[i], map[i][j]);
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < m; ++j) //初始化松弛量
slack[j] = MAXN;
while(1)
{
CLR(visitx, 0);
CLR(visity, 0);
if(Hungary(i))
break;
else
{
temp = MAXN;
for(int j = 0; j < m; ++j)
if(!visity[j])
temp = min(temp, slack[j]);
if(temp == MAXN) //无法松弛,找不到完备匹配
return false;
for(int j = 0; j < n; ++j) //更新顶标
{
if(visitx[j])
lx[j] -= temp;
}
for(int j = 0; j < m; ++j)
{
if(visity[j])
ly[j] += temp;
else
slack[j] -= temp;
}
}
}
}
return true;
}
int main()
{
int T = 1;
int s, r, v;
int ans;
int countm; //统计使用公寓数,剪枝
bool perfect; //是否存在完备匹配
while(~scanf("%d%d%d", &n, &m, &edge))
{
CLR(match, -1);
CLR(usem, 0);
for(int i = 0; i < n; ++i)
for(int j = 0; j < m; ++j)
map[i][j] = -MAXN;
countm = ans = 0;
perfect = false;
for(int i = 0; i < edge; ++i)
{
scanf("%d%d%d", &s, &r, &v);
if(v >= 0) //负权值不加边
map[s][r] = v;
usem[r] = true;
}
for(int i = 0; i < N; ++i) //公寓数少or使用公寓数少
if(usem[i])
countm++;
if(n > m || n > countm)
{
printf("Case %d: -1\n", T++);
continue;
}
perfect = KM_perfect_match();
for(int i = 0; i < m; ++i) //权值相加
if(match[i] != - 1)
ans += map[ match[i] ][i];
if(perfect)
printf("Case %d: %d\n", T++, ans);
else
printf("Case %d: -1\n", T++);
}
return 0;
}