pytorch模型操作

本文详细介绍了PyTorch中模型的保存和加载方法,包括state_dict的概念,如何使用torch.save和torch.load,以及如何在不同场景下保存和加载模型。强调了state_dict在模型持久化中的关键作用,并提供了保存和加载推理模型、完整模型、检查点、多模型以及在不同设备间转移模型的示例。此外,还讨论了在热启动模式下加载部分模型的灵活性和注意事项。
摘要由CSDN通过智能技术生成

保存和加载模型

当保存和加载模型时,需要熟悉三个核心功能:

1、torch.save:将序列化对象保存到磁盘中。此函数使用python 中的pickle模型进行序列化,此函数可以保存模型、tensor、字典等各种对象。
2、torch.load
3、torch.nn.Module.load_state_dict: 使用反序列化函数state_dict来加载模型的参数字典

1.什么是状态字典:state_dict?

在pytorch中,torch.nn.Module模型的可学习参数(权重和bias) 包含在模型的参数中,使用model.parameters()既可以进行访问。state_dict是python字典对象。注意只有可学习参数的层的模型才具有state_dict 这一项。 模型优化torch.optim也有state_dict属性, 它包含有关优化器的状态信息和使用的超参数。

因为state_dict的对象是Python字典,所以它们可以很容易的保存、更新、修改和恢复,为PyTorch模型和优化器添加了大量模块。

下面通过从简单模型训练一个分类器中来了解一下state_dict的使用。

class TheModelClass(nn.Module):
			def __init__(self):
				super(TheModelClass, self).__init__()
				self.conv1 = nn.Conv2d(3, 6, 5)
				self.pool = nn.MaxPool2d(2, 2)
				self.conv2 = nn.Conv2d(6, 16, 5)
				self.fc1 = nn.Linear(16 * 5 * 5, 120)
				self.fc2 = nn.Linear(120, 84)
				self.fc3 = nn.Linear(84, 10)
			def forward(self, x):
				x = self.pool(F.relu(self.conv1(x)))
				x = self.pool(F.relu(self.conv2(x)))
				x = x.view(-1, 16 * 5 *5)
				x = F.relu(self.fc1(x))
				x = F.relu(self.fc2(x))
				x = self.fc3(x)				
				return  x	
			
		#初始化模型
		model = TheModelClass()
		#初始化优化器
		optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
		#打印模型的状态字典
		print ("Model 's state_dict:")
		for param_tensor in model.state_dict():
				print (param_tensor, "\t", model.state_dict()[param_tensor].size())
		
		#打印优化器的状态字典
		for var_name in optimizer.state_dict():
				print (var_name,"\t", optimizer.state_dict[var_name])

输出

Model's state_dict:
conv1.weight     torch.Size([6, 3, 5, 5])
conv1.bias   torch.Size([6])
conv2.weight     torch.Size([16, 6, 5, 5])
conv2.bias   torch.Size([16])
fc1.weight   torch.Size([120, 400])
fc1.bias     torch.Size([120])
fc2.weight   torch.Size([84, 120])
fc2.bias     torch.Size([84])
fc3.weight   torch.Size([10, 84])
fc3.bias     torch.Size([10])

Optimizer's state_dict:
state    {}
param_groups     [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]

2、保存和加载推理模型

2.1 保存/加载state_dict(推荐使用)

保存: torch.save(model.state_dict, PATH)

加载:

model = TheModelClass(*args ,**kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

当保存好模型推来推断的时候,只需要保存模型学习到的参数,使用torch.save()函数来保存模型state_dict, 它会给模型恢复提供最大的灵活性,这就是为什么推荐它来保存的原因。

模型文件常用的扩展名为.pt 或者.pth

请记住,在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致 模型推断结果不一致。

注意
load_state_dict()函数只接受字典对象,而不是保存对象的路径。这就意味着在你传给load_state_dict()函数之前,你必须反序列化 你保存的state_dict。例如,你无法通过 model.load_state_dict(PATH)来加载模型。

2.2 保存或者加载完整模型

保存:torch.save(mode, PATH)

加载: model = torch.load(PATH) model.eval()

此部分保存/加载过程使用最直观的语法并涉及最少量的代码。以 Python `pickle 模块的方式来保存模型。这种方法的缺点是序列化数据受 限于某种特殊的类而且需要确切的字典结构。这是因为pickle无法保存模型类本身。相反,它保存包含类的文件的路径,该文件在加载时使用。 因此,当在其他项目使用或者重构之后,您的代码可能会以各种方式中断。

在 PyTorch 中最常见的模型保存使用‘.pt’或者是‘.pth’作为模型文件扩展名。

请记住,在运行推理之前,务必调用model.eval()设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致模型推断结果不一致。

3. 保存和加载 Checkpoint 用于推理/继续训练

保存:

torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': loss,
            ...
            }, PATH)

加载:

model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)

checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']

model.eval()
# - or -
model.train()

当保存成 Checkpoint 的时候,可用于推理或者是继续训练,保存的不仅仅是模型的 state_dict 。保存优化器的 state_dict 也很重要, 因为它包含作为模型训练更新的缓冲区和参数。你也许想保存其他项目,比如最新记录的训练损失,外部的torch.nn.Embedding层等等。

要保存多个组件,请在字典中组织它们并使用torch.save()来序列化字典。PyTorch 中常见的保存checkpoint 是使用 .tar 文件扩展名。

要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。

请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。

4. 在一个文件中保存多个模型

保存:

torch.save({
            'modelA_state_dict': modelA.state_dict(),
            'modelB_state_dict': modelB.state_dict(),
            'optimizerA_state_dict': optimizerA.state_dict(),
            'optimizerB_state_dict': optimizerB.state_dict(),
            ...
            }, PATH)

加载:

modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)

checkpoint = torch.load(PATH)
modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])

modelA.eval()
modelB.eval()
# - or -
modelA.train()
modelB.train()

当保存一个模型由多个torch.nn.Modules组成时,例如GAN(对抗生成网络)、sequence-to-sequence (序列到序列模型), 或者是多个模 型融合, 可以采用与保存常规检查点相同的方法。换句话说,保存每个模型的 state_dict 的字典和相对应的优化器。如前所述,可以通 过简单地将它们附加到字典的方式来保存任何其他项目,这样有助于恢复训练。

PyTorch 中常见的保存 checkpoint 是使用 .tar 文件扩展名。

要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。

请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。

5. 使用在不同模型参数下的热启动模式

保存:

torch.save(modelA.state_dict(), PATH)

加载:

modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)

在迁移学习或者训练新的复杂模型时,部分加载模型或者加载部分模型是最常见的情况。利用训练好的参数,有助于启动训练过程,帮助你的模型比从头开始训练更快的收敛。

无论是从缺少某些键的 state_dict 加载还是从键的数目多于加载模型的 state_dict , 都可以通过在load_state_dict()函数中将strict参数设置为 False 来忽略非匹配键的函数。

如果要将参数从一个层加载到另一个层,但是某些键不匹配,主要修改正在加载的 state_dict 中的参数键的名称以匹配要在加载到模型中的键即可。

6. 通过设备保存/加载模型

1、保存到cpu, 加载到cpu

保存

torch.save(model.state_dict(), PATH)

加载

device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

2 、保存到 GPU、加载到 GPU

保存

torch.save(model.state_dict(), PATH)

加载

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
#确保在你提供给模型的任何输入张量上调用input = input.to(device)

3、保存到 CPU,加载到 GPU

保存

torch.save(model.state_dict(), PATH)

加载

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  
# Choose whatever GPU device number you want
model.to(device)
#确保在你提供给模型的任何输入张量上调用input = input.to(device)

在CPU上训练好并保存的模型加载到GPU时,将torch.load()函数中的map_location参数设置为cuda:device_id。这会将模型加载到 指定的GPU设备。接下来,请务必调用model.to(torch.device(‘cuda’))将模型的参数张量转换为 CUDA 张量。最后,确保在所有模型输入上使用 .to(torch.device(‘cuda’))函数来为CUDA优化模型。请注意,调用my_tensor.to(device)会在GPU上返回my_tensor的新副本。它不会覆盖my_tensor。 因此, 请手动覆盖张量my_tensor = my_tensor.to(torch.device(‘cuda’))。

4、 保存 torch.nn.DataParallel 模型

保存

torch.save(model.module.state_dict(), PATH)

加载

# 加载任何你想要的设备

torch.nn.DataParallel是一个模型封装,支持并行GPU使用。要普通保存 DataParallel 模型, 请保存model.module.state_dict()。 这样,你就可以非常灵活地以任何方式加载模型到你想要的设备中。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值