环境:windows10+ cundn10.0+ cudnn7.3+ vs2017+paddle1.7
PaddleDetection-release-0.3:https://github.com/PaddlePaddle/PaddleDetection;
1、安装参考paddle官网即可,都是中文
2、faster_rcnn_dcn_r50_vd_fpn_2x官方模型测试
本测试使用IDE来修改相应路径,也可直接使用命令行;
修改ppdet\utils\cli.py中添加 default="../configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x.yml",
修改configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x.yml 中weights路径为你下载的模型
图片测试:
3、faster_rcnn_dcn_r50_vd_fpn_2x训练自己的数据
a)数据集制作:
国内交通标志数据集:共包含1465张640*640的交通标志图片,一共标注了6类交通标志,分别是:直行、左转、右转、禁行、禁鸣、人行横道,("straight", "left","right", "stop ", "nohonk", "crosswalk")。标注信息均保存在xml文件下载地址:https://www.kesci.com/home/dataset/5ea92354366f4d002d730fca 转换为coco2017即可;具体参考detectron2中制作方法
b)修改paddle的配置文件用于训练数据
修改configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x.yml 中weights路径为你训练的模型名字,num_classses=6+1
修改configs/faster_fpn_reader.yml 中数据路径修改为自己数据集路径
运行train.py即可
评价结果:
测试结果图: