数论 - 裴属定理 + 扩展欧几里得算法 + 线性同余方程

数论 - 扩展欧几里得算法 + 线性同余方程


1、裴蜀定理

对 于 任 意 正 整 数 a , b , 必 有 非 零 整 数 x , y , 使 得 对于任意正整数a,b,必有非零整数x,y,使得 a,bx,y使 a x + b y = d ax+by=d ax+by=d

其 中 d = g c d ( a , b ) 。 显 然 也 有 a x ′ + b y ′ = k × d , 即 x ′ = k × x , y ′ = k × y , k ∈ Z 。 其中d=gcd(a,b)。显然也有ax'+by'=k×d,即x'=k×x,y'=k×y,k∈Z。 d=gcd(a,b)ax+by=k×dx=k×x,y=k×ykZ

通 俗 地 讲 , a x + b y 能 够 取 到 a 和 b 的 最 大 公 约 数 的 整 数 倍 。 通俗地讲,ax+by能够取到a和b的最大公约数的整数倍。 ax+byab

重要推论:

若 a , b 互 质 , 即 g c d ( a , b ) = 1 , 则 a x + b y 可 取 到 任 意 正 整 数 。 若a,b互质,即gcd(a,b)=1,则ax+by可取到任意正整数。 a,bgcd(a,b)=1ax+by

裴属定理的通解:

设 ( x 0 , y 0 ) 是 方 程 a x + b y = d 的 一 组 解 , 则 通 解 为 { x = x 0 + k b ′ y = y 0 − k a ′ , 其 中 k ∈ Z , d = g c d ( a , b ) , a ′ = a d , b ′ = b d 。 设(x_0,y_0)是方程ax+by=d的一组解,则通解为\begin{cases}x=x_0+kb' \\y=y_0-ka'\end{cases},其中k∈Z,d=gcd(a,b),a'=\frac{a}{d},b'=\frac{b}{d}。 (x0,y0)ax+by=d{x=x0+kby=y0kakZd=gcd(a,b)a=dab=db
  证 明 : { a x 0 + b y 0 = d a x + b y = d , 两 式 相 减 , 得 a ( x − x 0 ) = b ( y 0 − y ) , 则 a ′ ( x − x 0 ) = b ′ ( y 0 − y ) , 从 而 b ′ ∣ a ′ ( x − x 0 ) 。 \ \\ 证明:\\\begin{cases}ax_0+by_0=d\\ax+by=d\end{cases},两式相减,得a(x-x_0)=b(y_0-y),则a'(x-x_0)=b'(y_0-y),从而b'|a'(x-x_0)。  {ax0+by0=dax+by=d,a(xx0)=b(y0y),a(xx0)=b(y0y)ba(xx0)

又 因 为 g c d ( a ′ , b ′ ) = 1 , 所 以 b ′ ∣ ( x − x 0 ) , 所 以 x = x 0 + k b ′ 。 同 理 , y = y 0 − k a ′ 。 k = 1 , 2 , . . . 。 又因为gcd(a',b')=1,所以b'|(x-x_0),所以x=x_0+kb'。同理,y=y_0-ka' 。k=1,2,...。 gcd(a,b)=1b(xx0)x=x0+kby=y0kak=1,2,...

所 以 知 道 一 组 特 殊 解 , 可 以 求 得 任 意 解 。 所以知道一组特殊解,可以求得任意解。

事 实 上 , 就 是 给 方 程 a x 0 + b y 0 = d 添 项 。 a x 0 + b y 0 = a ( x 0 + k b ′ ) + b ( y 0 − k a ′ ) = d , 容 易 验 证 这 个 通 解 。 事实上,就是给方程ax_0+by_0=d添项。\\ax_0+by_0=a(x_0+kb')+b(y_0-ka')=d,容易验证这个通解。 ax0+by0=dax0+by0=a(x0+kb)+b(y0ka)=d


2、扩展欧几里得算法

给 定 n 对 正 整 数 a i , b i , 对 于 每 对 数 , 求 出 一 组 x i , y i , 使 其 满 足 给定n对正整数a_i,b_i,对于每对数,求出一组x_i,y_i,使其满足 nai,bixi,yi使 a i x i + b i y i = g c d ( a i , b i ) 。 a_ix_i+b_iy_i=gcd(a_i,b_i)。 aixi+biyi=gcd(ai,bi)

输入格式
第一行包含整数n。

接下来n行,每行包含两个整数ai,bi。

输出格式
输出共n行,对于每组ai,bi,求出一组满足条件的xi,yi,每组结果占一行。

本题答案不唯一,输出任意满足条件的xi,yi均可。

数据范围
1≤n≤105,
1≤ai,bi≤2∗109

输入样例:
2
4 6
8 18
输出样例:
-1 1
-2 1

分析:

由 欧 几 里 得 算 法 ( 辗 转 相 除 法 ) , 我 们 知 道 g c d ( a , b ) = g c d ( b , a % b ) 由欧几里得算法(辗转相除法),我们知道gcd(a,b)=gcd(b,a\%b) ()gcd(a,b)=gcd(b,a%b)

那 么 方 程 a x + b y = g c d ( a , b ) < = > b y + ( a % b ) x = g c d ( b , a % b ) 。 那么方程ax+by=gcd(a,b)<=>by+(a\%b)x=gcd(b,a\%b)。 ax+by=gcd(a,b)<=>by+(a%b)x=gcd(b,a%b)

即 b y + ( a − ⌊ a b ⌋ ⋅ b ) x = g c d ( b , a % b ) , 整 理 可 得 : a x + b ( y − ⌊ a b ⌋ ⋅ x ) = g c d ( b , a % b ) 。 即by+(a-\lfloor\frac{a}{b}\rfloor·b)x=gcd(b,a\%b),\\整理可得:ax+b(y-\lfloor\frac{a}{b}\rfloor·x)=gcd(b,a\%b)。 by+(abab)x=gcd(b,a%b)ax+b(ybax)=gcd(b,a%b)

那 么 方 程 a x + b y = g c d ( a , b ) 的 一 组 解 ( x , y ) 就 可 以 通 过 先 递 归 , 再 反 推 来 确 定 。 那么方程ax+by=gcd(a,b)的一组解(x,y)就可以通过先递归,再反推来确定。 ax+by=gcd(a,b)(x,y)

代码:

#include<iostream>
#include<cstdio>

using namespace std;

const int N=1e5+10;

int n;

int exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    
    int d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    
    return d;
}

int main()
{
    cin>>n;
    while(n--)
    {
        int a,b,x,y;
        scanf("%d%d",&a,&b);
        exgcd(a,b,x,y);
        printf("%d %d\n",x,y);
    }
    
    return 0;
}

3、线性同余方程

给 定 n 组 数 据 a i , b i , m i , 对 于 每 组 数 求 出 一 个 x i , 使 其 满 足 a i x i ≡ b i ( m o d   m i ) , 如 果 无 解 则 输 出 i m p o s s i b l e 。 给定n组数据a_i,b_i,m_i,对于每组数求出一个x_i,使其满足a_ix_i≡b_i(mod \ m_i),如果无解则输出impossible。 nai,bi,mixi使aixibi(mod mi)impossible

输入格式
第一行包含整数n。

接下来n行,每行包含一组数据ai,bi,mi。

输出格式
输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在int范围之内。

数据范围
1≤n≤105,
1≤ai,bi,mi≤2∗109

输入样例:
2
2 3 6
4 3 5
输出样例:
impossible
7

分析:

方 程 a x ≡ b ( m o d   m ) < = > a x = m y + b , 其 中 y ∈ Z 。 方程ax≡b(mod \ m)<=>ax=my+b,其中y∈Z。 axb(mod m)<=>ax=my+byZ

即 求 是 否 有 整 数 解 ( x 0 , y 0 ) 满 足 a x 0 + m y 0 = b 。 即求是否有整数解(x_0,y_0)满足ax_0+my_0=b。 (x0,y0)ax0+my0=b

由 裴 属 定 理 , 上 述 方 程 有 整 数 解 , 需 保 证 b = k × g c d ( a , m ) , k ∈ Z 。 由裴属定理,上述方程有整数解,需保证b=k×gcd(a,m),k∈Z。 b=k×gcd(a,m)kZ

用 扩 展 欧 几 里 得 算 法 容 易 解 得 a x + b y = g c d ( a , b ) 的 一 组 解 。 因 此 我 们 先 求 得 a x 0 + m y 0 = g c d ( a , m ) 的 一 组 解 的 x 0 , 再 将 其 扩 大 b g c d ( a , m ) 倍 即 可 。 用扩展欧几里得算法容易解得ax+by=gcd(a,b)的一组解。\\因此我们先求得ax_0+my_0=gcd(a,m)的一组解的x_0,再将其扩大\frac{b}{gcd(a,m)}倍即可。 ax+by=gcd(a,b)ax0+my0=gcd(a,m)x0gcd(a,m)b

输 出 答 案 需 在 i n t 范 围 内 , 根 据 裴 属 定 理 , 我 们 要 将 最 后 的 答 案 对 m g c d ( a , m ) 再 取 模 , 对 m 取 模 也 行 。 输出答案需在int范围内,根据裴属定理,\\我们要将最后的答案对\frac{m}{gcd(a,m)}再取模,对m取模也行。 intgcd(a,m)mm

注意: 最 后 做 乘 法 为 避 免 i n t 溢 出 , 要 强 制 类 型 转 换 。 最后做乘法为避免int溢出,要强制类型转换。 int

//ax+my=b
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

using namespace std;

int n, a, b, x, y, m;

int exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1, y=0;
        return a;
    }
    
    int d = exgcd(b,a%b,y,x);
    y-=(a/b)*x;
    return d;
}

int main()
{
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d%d%d",&a,&b,&m);
        int t = exgcd(a,m,x,y);
        if(b%t!=0) puts("impossible");
        else
        {
            int k = b/t;
            x=((long long)x*k)%(m/t);
            printf("%d\n",x);
        }
    }
    
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值