矩阵快速幂 - 斐波那契前 n 项和 - AcWing 1303

矩阵快速幂 - 斐波那契前 n 项和 - AcWing 1303

大 家 都 知 道 F i b o n a c c i 数 列 吧 , f 1 = 1 , f 2 = 1 , f 3 = 2 , f 4 = 3 , … , f n = f n − 1 + f n − 2 。 大家都知道 Fibonacci 数列吧,f_1=1,f_2=1,f_3=2,f_4=3,…,f_n=f_{n−1}+f_{n−2}。 Fibonaccif1=1,f2=1,f3=2,f4=3,,fn=fn1+fn2

现 在 问 题 很 简 单 , 输 入 n 和 m , 求 f n 的 前 n 项 和 S n   m o d   m 。 现在问题很简单,输入 n 和 m,求 f_n 的前 n 项和 S_n\ mod\ m。 nmfnnSn mod m

输入格式

共 一 行 , 包 含 两 个 整 数 n 和 m 。 共一行,包含两个整数 n 和 m。 nm

输出格式

输 出 前 n 项 和 S n   m o d   m 的 值 。 输出前 n 项和 S_n\ mod\ m 的值。 nSn mod m

数据范围

1 ≤ n ≤ 2000000000 , 1 ≤ m ≤ 1000000010 1≤n≤2000000000, 1≤m≤1000000010 1n2000000000,1m1000000010

输入样例:

5 1000

输出样例:

12

分析:

设 F n = [ f n f n + 1 S n ] , 设F_n=[f_n\quad f_{n+1}\quad S_n], Fn=[fnfn+1Sn]

配 凑 3 × 3 的 矩 阵 A , 使 得 F n A = F n + 1 。 配凑3×3的矩阵A,使得F_nA=F_{n+1}。 3×3A使FnA=Fn+1

即 [ f n f n + 1 S n ] ∣ ∣ = [ f n + 1 f n + 2 S n + 1 ] 即[f_n\quad f_{n+1}\quad S_n]\begin{vmatrix}\qquad\qquad\qquad\\\qquad\\\qquad\end{vmatrix}=[f_{n+1}\quad f_{n+2}\quad S_{n+1}] [fnfn+1Sn]=[fn+1fn+2Sn+1]

f n + 1 = 0 × f n + 1 × f n + 1 + 0 × S n f_{n+1}=0×f_{n}+1×f_{n+1}+0×S_n fn+1=0×fn+1×fn+1+0×Sn

f n + 2 = 1 × f n + 1 × f n + 1 + 0 × S n f_{n+2}=1×f_{n}+1×f_{n+1}+0×S_n fn+2=1×fn+1×fn+1+0×Sn

S n + 1 = 0 × f n + 1 × f n + 1 + 1 × S n S_{n+1}=0×f_{n}+1×f_{n+1}+1×S_n Sn+1=0×fn+1×fn+1+1×Sn

配 凑 出 A = ∣ 0 1 0 1 1 0 0 1 1 ∣ 。 配凑出A=\begin{vmatrix}0 \quad1\quad0\\1 \quad1\quad0\\0 \quad1\quad1\end{vmatrix}。 A=010110011

则 同 过 矩 阵 乘 法 : F 1 A n − 1 = F n = [ f n f n + 1 S n ] , 计 算 得 到 F n [ 2 ] = S n 。 则同过矩阵乘法:F_1A^{n-1}=F_n=[f_n\quad f_{n+1}\quad S_n],计算得到F_n[2]=S_n。 F1An1=Fn=[fnfn+1Sn]Fn[2]=Sn

代码:

#include<iostream>
#include<cstring>

#define ll long long

using namespace std;

const int N=3;

int n,m;
ll f1[N][N]={{1,1,1}};
ll A[N][N]={
    {0,1,0},
    {1,1,1},
    {0,0,1}
};

void mul(ll a[][N],ll b[][N])
{
    ll c[N][N]={0};
    for(int i=0;i<3;i++)
        for(int j=0;j<3;j++)
            for(int k=0;k<3;k++)
                c[i][j]=(c[i][j]+a[i][k]*b[k][j]%m)%m;
    memcpy(a,c,sizeof c);
}

void quick_pow(ll a[][N],int k)
{
    ll E[N][N]={    //单位阵
        {1,0,0},
        {0,1,0},
        {0,0,1}
    };
    while(k)
    {
        if(k&1) mul(E,a);
        mul(a,a);
        k>>=1;
    }
    memcpy(a,E,sizeof E);
}

int main()
{
    cin>>n>>m;
    
    quick_pow(A,n-1);
    mul(f1,A);
    
    cout<<f1[0][2]<<endl;
    
    return 0;
}
在C++中,矩阵快速幂是一种高效计算斐波那契数列第n的方法。斐波那契数列定义为:F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2)。通过矩阵形式可以表示为: ``` [ F(n) ] = [ 1 1 ]^n [ F(1) ] [ F(n-1) ] [ 1 0 ] [ F(0) ] ``` 上述矩阵的n次方可以通过快速幂算法进行高效计算。 矩阵快速幂的核心思想是利用分治法将幂的计算过程分解为更小的幂次的计算。具体步骤如下: 1. 首先定义一个矩阵,例如: ``` Matrix = [ 1 1 ] [ 1 0 ] ``` 2. 使用快速幂算法计算矩阵的n次方。快速幂算法通过不断地将指数n分解为二的幂次来减少乘法的次数。具体来说,对于矩阵M指数n,可以按照以下方式递归或迭代计算M的n次方: - 如果n为偶数,那么M^n = (M^(n/2))^2- 如果n为奇数,那么M^n = M * (M^(n-1))。 3. 使用初始值构造单位矩阵,然后用快速幂计算得到的结果与初始单位矩阵相乘,最终得到的矩阵左上角的元素就是斐波那契数列第n。 下面是使用C++实现矩阵快速幂斐波那契数列第n的代码示例: ```cpp #include <iostream> #include <vector> using namespace std; const int MOD = 1000000007; // 定义模数,用于处理大数问题 typedef vector<vector<long long>> Matrix; // 矩阵乘法 Matrix multiply(const Matrix &a, const Matrix &b) { Matrix result(2, vector<long long>(2)); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { result[i][j] = 0; for (int k = 0; k < 2; ++k) { result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD; } } } return result; } // 矩阵快速幂 Matrix quickPow(Matrix base, long long n) { Matrix result(2, vector<long long>(2, 1)); while (n > 0) { if (n & 1) result = multiply(result, base); base = multiply(base, base); n >>= 1; } return result; } // 计算斐波那契数列第n int fibonacci(int n) { if (n == 0) return 0; Matrix base = {{1, 1}, {1, 0}}; Matrix result = quickPow(base, n - 1); return result[0][0]; // 返回F(n) } int main() { int n; cout << "Enter the position of the Fibonacci sequence: "; cin >> n; cout << "Fibonacci number at position " << n << " is: " << fibonacci(n) << endl; return 0; } ``` 这个程序通过定义矩阵乘法矩阵快速幂算法,计算出斐波那契数列的第n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值