行为识别论文笔记|I3D S3D R(2+1)D P3D CSN

这篇博客详细记录了行为识别领域的六种重要模型:I3D、T3D、S3D、R(2+1)D、P3D和CSN的贡献。I3D通过扩展2D卷积到3D以捕捉时空信息;T3D利用2D预训练权重进行知识迁移;S3D提出时空分解卷积;R(2+1)D通过空间时间分解实现损失更快下降;P3D同样采用分解策略,且在效率与准确性间取得平衡;CSN则引入通道分离卷积,降低计算复杂度并保持性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行为识别论文笔记-I3D T3D S3D R(2+1)D P3D CSN

I3D

Carreira, Joao, and Andrew Zisserman. “Quo vadis, action recognition? a new model and the kinetics dataset.” proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

T3D

Diba, Ali, et al. “Temporal 3d convnets: New architecture and transfer learning for video classification.” arXiv preprint arXiv:1711.08200 (2017).

S3D

Xie, Saining, et al. “Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification.” Proceedings of the European Conference on Computer Vision (ECCV). 2018.

R(2+1)D

Tran, Du, et al. “A closer look at spatiotemporal convolutions for action recognition.” Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018.

P3D

Qiu, Zhaofan, Ting Yao, and Tao Mei. “Learn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值