AI开发平台系列1:AI开发平台“家族”概览

本文概述了AI开发平台的重要性和类别,强调其在数据管理、模型开发和计算训练中的价值。集成式机器学习平台如AWS Sagemaker、Azure ML、阿里云PAI、百度BML和华为云ModelArts,以及AI基础软件平台如Databricks、Kubeflow等,为企业提供高效、低成本的AI应用途径。集成式平台提供一站式服务,而基础软件平台更注重易用性和灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【编者按:AI技术蓬勃发展,已逐渐渗透进国民经济的各行各业。但企业在AI技术的应用仍面临数据、算法、技术等方面的挑战,需专业AI开发与计算工具帮助企业降低AI应用门槛,加速创新。在此趋势下,AI开发平台纷纷涌现。白海科技将通过系列文章,梳理典型AI开发平台,并对其技术与功能进行对比分析,为广大企业与行业伙伴揭开AI开发平台的神秘面纱】

1. AI开发平台背景

1. AI开发平台背景

AI技术日益渗透进各行各业

近年来,随着大数据、云计算等技术的长足进展,机器学习、计算机视觉、语音识别、知识图谱等人工智能技术飞速发展,逐渐跨越科学与应用的“鸿沟”,日益渗透进国民经济的各行各业。除互联网等数字化原生企业作为AI技术应用的先行者外,零售、制造业等传统企业和政府机构也在积极拥抱人工智能这一颠覆性技术,以局部业务为试点进行探索。

图1 人工智能技术在我国各行业的应用现状

AI加速商业化仍需平台工具的助力

虽然人工智能技术潜力巨大,对企业的创新和发展具有颠覆性意义,但其在具体实践落地中仍面临来自数据、算法和算力层面的重重挑战。

数据方面:数据是算法开发与训练的养料,影响算法训练的效果与质量。数据层面的核心挑战是海量数据的管理与探索,一方面半结构化和非结构化数据的激增,加剧数据接入、数据标准化和数据价值挖掘的挑战;另一方面,实际业务和生产中的数据噪声较多,也极大提升了数据管理和探索的难度。此外,数据标注繁冗也是重要的挑战,海量数据标注通常耗费大量的时间和精力。

算法方面:在算法开发与训练方面,随着算法模型日益庞大和复杂,最核心的挑战是训练效率和计算性能。其次,AI开发、训练技术和工具门槛高,在AI专业人员普遍短缺情况下,企业对AI技术的探索与应用阻力较高;此外,算法开发与生产涉及多角色协同,目前缺乏有效的协作工具与平台,沟通不畅极大地影响效率。

算力方面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值