如何结合文本特征检测仇恨和攻击性语言

本文探讨了如何利用深度学习和多种文本特征(如BERT、字符和仇恨词编码)检测Twitter上的仇恨和攻击性内容。在HASOC-2021数据集上进行实验,结果显示仇恨词的多热编码对模型性能提升显著,最高宏F1分数达到0.77。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©原创作者 | 周鹏

体验与资源链接:

https://github.com/sherzod-hakimov/HASOC-2021---Hate-Speech-Detection

论文:

Combining Textual Features for the Detection of Hateful and Offensive Language

地址:

https://arxiv.org/abs/2112.04803

摘要

自从网络攻击成为一种攻击性行为以来,许多网络用户在日常社交活动中都会受到攻击性语言的攻击。

在这篇文章中,我们分析了如何结合不同的文本特征来检测Twitter上的仇恨或攻击性帖子。

我们提供了详细的实验评估,以了解神经网络架构中每个构建块的影响。所提出的架构是在English Subtask 1A上进行评估的:从TIB-VA团队下的HASOC-2021所发布的数据集中识别仇恨、攻击性和亵渎性内容。

我们比较了上下文词嵌入的不同变体,并结合了字符级嵌入和收集的仇恨词编码。

01 简介

一般来说,仇恨言论被定义为一种基于特定特征,如宗教、种族、出身、性取向、性别、外表、残疾或疾病、用于表达对目标群体或个人的仇恨的语言。

在本文中,我们分析了结合多种文本特征来检测在推特文本中表达的仇恨性、冒犯性或亵渎性语言的影响。

我们评估了在英语和印度雅利安语(HASOC)挑战数据集的仇恨言语和攻击性内容识别上使用我们的方法(https://hasocfire.github.io)。

我们将解决方案提交到English Subtask 1A上:从HASOC- 2021挑战系列的帖子中识别仇恨、冒犯和亵渎内容。这项任务包括对一条给定的推文文本进行分类,无论其内容是否是可恨的、冒犯性的还是亵渎性的语言。

我们提出了一种基于神经网络体系结构的多种文本特征的组合,并评估了不同的配置。我们的实验评估是对所有三个数据集进行的:HASOC-2019,HASOC-2020,HASOC-202

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP论文解读

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值