智能提应用搭建建立在internlm2-chat-7b模型上。下面我们进入搭建步骤。
一、Lagent
Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。
二、AgentLego
AgentLego 是一个提供了多种开源工具 API 的多模态工具包,旨在像是乐高积木一样,让用户可以快速简便地拓展自定义工具,从而组装出自己的智能体。通过 AgentLego 算法库,不仅可以直接使用多种工具,也可以利用这些工具,在相关智能体框架(如 Lagent,Transformers Agent 等)的帮助下,快速构建可以增强大语言模型能力的智能体。
三、两者的关系
Lagent 是一个智能体框架,而 AgentLego 与大模型智能体并不直接相关,而是作为工具包,在相关智能体的功能支持模块发挥作用。
四、环境配置
执行下面的命令创建存放Agent的目录:
mkdir -p /root/agent
配置cuda环境
studio-conda -t agent -o pytorch-2.1.2
安装Lagent和AgentLego
cd /root/agent
conda activate agent
git clone https://gitee.com/internlm/lagent.git
cd lagent && git checkout 581d9fb && pip install -e . && cd ..
git clone https://gitee.com/internlm/agentlego.git
cd agentlego && git checkout 7769e0d && pip install -e . && cd ..
安装其他依赖
conda activate agent
pip install lmdeploy==0.3.0
准备Tutorial
cd /root/agent
git clone -b camp2 https://gitee.com/internlm/Tutorial.git
五、Lagent:轻量级智能体框架
- Lagent Web Demo
使用LMdeploy部署,启动一个api_server
conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \ --server-name 127.0.0.1 \ --model-name internlm2-chat-7b \ --cache-max-entry-count 0.1
启动并使用Lagent Web Demo
conda activate agent cd /root/agent/lagent/examples streamlit run internlm2_agent_web_demo.py --server.address 127.0.0.1 --server.port 78进行本地端口映射 ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号
本地浏览器打开 http://localhost:7860 以使用 Lagent Web Demo。首先输入模型 IP 为 127.0.0.1:23333,在输入完成后按下回车键以确认。并选择插件为 ArxivSearch,以让模型获得在 arxiv 上搜索论文的能力。
2.进阶用Lagent自定义工具
使用 Lagent 自定义工具主要分为以下几步:继承 BaseAction 类,实现简单工具的 run 方法;或者实现工具包内每个子工具的功能,简单工具的 run 方法可选被 tool_api 装饰;工具包内每个子工具的功能都需要被 tool_api 装饰。下面我们将实现一个调用和风天气 API 的工具以完成实时天气查询的功能。
创建工具文件
touch /root/agent/lagent/lagent/actions/weather.py
(大小写敏感)新建工具文件,添加如下内容:
import json
import os
import requests
from typing import Optional, Type
from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode
class WeatherQuery(BaseAction):
"""Weather plugin for querying weather information."""
def __init__(self,
key: Optional[str] = None,
description: Optional[dict] = None,
parser: Type[BaseParser] = JsonParser,
enable: bool = True) -> None:
super().__init__(description, parser, enable)
key = os.environ.get('WEATHER_API_KEY', key)
if key is None:
raise ValueError(
'Please set Weather API key either in the environment '
'as WEATHER_API_KEY or pass it as `key`')
self.key = key
self.location_query_url = 'https://geoapi.qweather.com/v2/city/lookup'
self.weather_query_url = 'https://devapi.qweather.com/v7/weather/now'
@tool_api
def run(self, query: str) -> ActionReturn:
"""一个天气查询API。可以根据城市名查询天气信息。
Args:
query (:class:`str`): The city name to query.
"""
tool_return = ActionReturn(type=self.name)
status_code, response = self._search(query)
if status_code == -1:
tool_return.errmsg = response
tool_return.state = ActionStatusCode.HTTP_ERROR
elif status_code == 200:
parsed_res = self._parse_results(response)
tool_return.result = [dict(type='text', content=str(parsed_res))]
tool_return.state = ActionStatusCode.SUCCESS
else:
tool_return.errmsg = str(status_code)
tool_return.state = ActionStatusCode.API_ERROR
return tool_return
def _parse_results(self, results: dict) -> str:
"""Parse the weather results from QWeather API.
Args:
results (dict): The weather content from QWeather API
in json format.
Returns:
str: The parsed weather results.
"""
now = results['now']
data = [
f'数据观测时间: {now["obsTime"]}',
f'温度: {now["temp"]}°C',
f'体感温度: {now["feelsLike"]}°C',
f'天气: {now["text"]}',
f'风向: {now["windDir"]},角度为 {now["wind360"]}°',
f'风力等级: {now["windScale"]},风速为 {now["windSpeed"]} km/h',
f'相对湿度: {now["humidity"]}',
f'当前小时累计降水量: {now["precip"]} mm',
f'大气压强: {now["pressure"]} 百帕',
f'能见度: {now["vis"]} km',
]
return '\n'.join(data)
def _search(self, query: str):
# get city_code
try:
city_code_response = requests.get(
self.location_query_url,
params={'key': self.key, 'location': query}
)
except Exception as e:
return -1, str(e)
if city_code_response.status_code != 200:
return city_code_response.status_code, city_code_response.json()
city_code_response = city_code_response.json()
if len(city_code_response['location']) == 0:
return -1, '未查询到城市'
city_code = city_code_response['location'][0]['id']
# get weather
try:
weather_response = requests.get(
self.weather_query_url,
params={'key': self.key, 'location': city_code}
)
except Exception as e:
return -1, str(e)
return weather_response.status_code, weather_response.json()
获取API KEY
首先要获取 API KEY。首先打开 开发文档 | 和风天气开发服务 后,点击右上角控制台。进入控制台后,点击左侧项目管理,然后点击右上角创建项目以创建新项目。输入相关项目名称,选择免费订阅,Web API 以及输入 key 的名称。(项目名称和 key 的名词自由输入即可,接下来回到项目管理页面,查看我们刚刚创建的 key,并且复制好以供使用。启动 LMDeploy 服务和 Tutorial 已经写好的用于这部分的 WebDemo。
conda activate agent lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \ --server-name 127.0.0.1 \ --model-name internlm2-chat-7b \ --cache-max-entry-count 0.1 export WEATHER_API_KEY=在2.2节获取的API KEY # 比如 export WEATHER_API_KEY=1234567890abcdef conda activate agent cd /root/agent/Tutorial/agent streamlit run internlm2_weather_web_demo.py --server.address 127.0.0.1 --server.port 7860 体验自定义工具效果: 映射本地端口: ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口 本地浏览器打开 http://localhost:7860 以使用 Lagent Web Demo。首先输入模型 IP 为 127.0.0.1:23333,在输入完成后按下回车键以确认。并选择插件为 WeatherQuery,以让模型获得查询天气的能力。
六、AgentLego组装智能体乐高
- 直接使用AgentLego
下载demo文件
cd /root/agent wget http://download.openmmlab.com/agentlego/road.jpg
首先安装mim,然后通过mim工具来安装mmdet,AgentLego实现的目标检测工具是基于 mmdet (MMDetection) 算法库中的 RTMDet-Large 模型。
pip install openmim==0.3.9
mim install mmdet==3.3.0
/root/agent 目录下新建 direct_use.py 文件,文件添加如下内容:
import re
import cv2
from agentlego.apis import load_tool
# load tool
tool = load_tool('ObjectDetection', device='cuda')
# apply tool
visualization = tool('/root/agent/road.jpg')
print(visualization)
# visualize
image = cv2.imread('/root/agent/road.jpg')
preds = visualization.split('\n')
pattern = r'(\w+) \((\d+), (\d+), (\d+), (\d+)\), score (\d+)'
for pred in preds:
name, x1, y1, x2, y2, score = re.match(pattern, pred).groups()
x1, y1, x2, y2, score = int(x1), int(y1), int(x2), int(y2), int(score)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1)
cv2.putText(image, f'{name} {score}', (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 1)
cv2.imwrite('/root/agent/road_detection_direct.jpg', image)
执行python /root/agent/direct_use.py
脚本进行RTMDet-Large 权重下载并推理。相应目录下多了一张图片。
2.进阶作为智能体工具使用
修改相关文件
/root/agent/agentlego/webui/modules/agents/lagent_agent.py 文件的第 105行位置,将 internlm2-chat-20b 修改为 internlm2-chat-7b:
使用LMdeploy部署
执行如下代码使用LMDeploy 启动一个AgentLego 的WebUI 需要用到 api_server。
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \ --server-name 127.0.0.1 \ --model-name internlm2-chat-7b \ --cache-max-entry-count 0.1
启动AgentLego WebUI
cd /root/agent/agentlego/webui python one_click.py
本地映射端口:
ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号
本地的浏览器页面中打开 http://localhost:7860 使用 AgentLego WebUI。
页面配置Agent:按下图各项选择,点击save to保存配置。Agent框为internlm2点击Load加载。
配置工具:按下图选择,点击save保存等待加载。
使用Chat,工具加载完成后,点击上方 Chat 以进入对话页面。在页面下方选择工具部分只选择 ObjectDetection 工具,为了确保调用工具的成功率,请在使用时确保只有这一个工具启用。
点击右下角文件夹以上传图片,上传图片后输入指令并点击 generate 得到模型回复。
3.进阶用AgentLego自定义工具
基于 AgentLego 构建自己的自定义工具。自定义工具主要分为以下几步:继承 BaseTool 类,修改 default_desc 属性(工具功能描述),如有需要,重载 setup 方法(重型模块延迟加载),重载 apply 方法(工具功能实现),下面我们将实现一个调用 MagicMaker 的 API 以实现图像生成的工具。
创建工具文件:
touch /root/agent/agentlego/agentlego/tools/magicmaker_image_generation.py
新建工具文件。该文件的内容如下:
import json
import requests import numpy as np from agentlego.types import Annotated, ImageIO, Info from agentlego.utils import require from .base import BaseTool class MagicMakerImageGeneration(BaseTool): default_desc = ('This tool can call the api of magicmaker to ' 'generate an image according to the given keywords.') styles_option = [ 'dongman', # 动漫 'guofeng', # 国风 'xieshi', # 写实 'youhua', # 油画 'manghe', # 盲盒 ] aspect_ratio_options = [ '16:9', '4:3', '3:2', '1:1', '2:3', '3:4', '9:16' ] @require('opencv-python')
def __init__(self,
style='guofeng',
aspect_ratio='4:3'):
super().__init__()
if style in self.styles_option:
self.style = style
else:
raise ValueError(f'The style must be one of {self.styles_option}')
if aspect_ratio in self.aspect_ratio_options:
self.aspect_ratio = aspect_ratio
else:
raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')
def apply(self,
keywords: Annotated[str,
Info('A series of Chinese keywords separated by comma.')]
) -> ImageIO:
import cv2
response = requests.post(
url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',
data=json.dumps({
"official": True,
"prompt": keywords,
"style": self.style,
"poseT": False,
"aspectRatio": self.aspect_ratio
}),
headers={'content-type': 'application/json'}
)
image_url = response.json()['data']['imgUrl']
image_response = requests.get(image_url)
image = cv2.imdecode(np.frombuffer(image_response.content, np.uint8), cv2.IMREAD_COLOR)
return ImageIO(image)
注册新工具
修改 /root/AgentLego/agentlego/agentlego/tools/__init__.py 文件,将我们的工具注册在工具列表中。如下所示,我们将 MagicMakerImageGeneration 通过 from .magicmaker_image_generation import MagicMakerImageGeneration 导入到了文件中,并且将其加入了 __all__ 列表中:
体验自定义工具效果:
两个 terminal 中分别启动 LMDeploy 服务和 AgentLego 的 WebUI 以体验我们自定义的工具的效果。
执行如下命令启动LMDeploy服务
conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \ --server-name 127.0.0.1 \ --model-name internlm2-chat-7b \ --cache-max-entry-count 0.1
执行如下命令下载权重文件启动AgentLego的Web UI服务:
cd /root/agent/agentlego/webui python one_click.py
本地端口映射
ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号
本地的浏览器页面中打开 http://localhost:7860 ,Tool 界面选择 MagicMakerImageGeneration 后点击 save 后,回到 Chat 页面选择 MagicMakerImageGeneration 工具后就可以开始使用。