模糊认知映射的定义、应用与类型
1. FCM作为模拟工具
在模拟与建模领域,存在一种常见的误解,认为建模和模拟的目标是设计出完美的模拟。然而,创建完美模型是难以实现的,因为这需要完美的测量(而测量完成时可能已无法反映现实),或者需要无限的资源来创建和运行一个与现实一样复杂的模型。因此,该领域更关注创建能够充分解决问题的计算抽象方法,即符合目的的方法。模型的目的大致可分为解释性和预测性。
- 解释性模型 :旨在提出一种“解释”,是一种构建理论的方法,关注某种现象发生的原因。例如,谢林的隔离模型从混合人口开始,运用个体在部分邻居与自己不同时会迁移的理论,成功再现了当代一些社会中观察到的隔离模式。这种模型并不声称其理论是唯一有效的,而是建立了一种潜在的因果链。
- 预测性模型 :常被误解为能预知未来的水晶球,但实际上许多模型在预测未来方面并不成功,新冠疫情模型就是很好的警示案例。预测性模型的重点在于干预,可作为虚拟实验室来测试场景,并与基线案例(如照常营业)进行评估。重点在于识别最佳场景,而非准确预测世界的未来。例如,一个新冠疫情模型可能预测的感染人数是实际的两倍,但如果它能帮助我们在接种疫苗和不接种疫苗之间做出决策,就达到了其目的。
在模拟环境中,模糊认知映射(FCMs)主要用作干预的预测模型。例如,在促进可持续食品消费方面,FCM可以预测各种干预措施(如信息宣传、小规模农业)对感兴趣变量(如改善消费者态度、解决供应链问题)的影响。由于FCM没有时间概念,且所有变量都在相同区间内缩放,因此它不预测具体的点估计值,而是比较不同干预措施的效果。FCM作为决策支持系统,其
模糊认知映射的应用与类型解析
超级会员免费看
订阅专栏 解锁全文
49

被折叠的 条评论
为什么被折叠?



