协方差矩阵对学统计的来说很重要,本文详细说明其相关知识(计算公式等)以及来历与实质含义。其实质主要是从一维到多维的一个推广。从以下几个点去描述它的来历:
一、低维样本情形的统计量:均值、标准差、方差
二、高维样本情形的统计量::均值、协方差
三、相关复杂概念、问题的解释
一、低维情形的统计量:均值、标准差、方差
假设自然数集中抽取一个含有3个样本的集合 :=(1,2,3), 我们简记这个集合的一些统计概念: 均值:
,方差:
,标准差:
(
), 依次给出这些概念的公式描述。
均值一般指平均数。平均数,统计学术语,是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数关键在于确定“总数量”以及和总数量对应的总份数。对于样本,其平均值为
标准差: 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
对于我们设的样本,其标准差为
方差=标准差的平方。对于我们设的样本,其方差为:

最低0.47元/天 解锁文章
3935

被折叠的 条评论
为什么被折叠?



