协方差矩阵的意义与见解

协方差矩阵对学统计的来说很重要,本文详细说明其相关知识(计算公式等)以及来历与实质含义。其实质主要是从一维到多维的一个推广。从以下几个点去描述它的来历:

一、低维样本情形的统计量:均值、标准差、方差

二、高维样本情形的统计量::均值、协方差

三、相关复杂概念、问题的解释

一、低维情形的统计量:均值、标准差、方差

假设自然数集中抽取一个含有3个样本的集合  S:=(1,2,3), 我们简记这个集合的一些统计概念: 均值: {\bar S},方差:var(S),标准差: \sigma(S),   依次给出这些概念的公式描述。

均值一般指平均数。平均数,统计学术语,是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数关键在于确定“总数量”以及和总数量对应的总份数。对于样本S,其平均值为

{\bar S} = \frac{1+2+3}{3}=2

标准差: 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 

对于我们设的样本S,其标准差为

\sigma(S)=\sqrt{\frac{(1-{\bar S})^2+(2-{\bar S})^2 + (3-{\bar S})^2}{3-1}}=1

方差=标准差的平方。对于我们设的样本S,其方差为:

var(S)=\frac{(1-{\bar S})^2+(2-{\bar S})^2 + (3-{\bar S})^2}{3-1}=1

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yita_matrix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值