可发1区的超级创新思路(python 、MATLAB实现):基于多尺度注意力TCN-KAN与小波变换的时间序列预测模型

一、数学模型与原理

1.1 小波变换多尺度分解

输入功率序列 x(t) 经小波变换分解为近似系数 Aj​ 与细节系数 Dj​:

1.2 多尺度TCN特征提取

对每个尺度子序列 {A3​,D3​,D2​,D1​} 采用独立TCN:

 

 式中 ∗d​ 为扩张率 d=2l 的扩张卷积,Wd​ 为可学习参数。

1.3 多尺度注意力机制

设第 k 个尺度特征为 Hk​∈RT×C,注意力权重计算为:

 

融合特征:

1.4 KAN预测层

基于Kolmogorov-Arnold表示定理构建网络:

其中 ϕq,p​ 为可学习的一维函数(B样条参数化),Φq​ 为全连接层。


二、模型架构与代码实现

2.1 核心模块实现

(1)小波分解层(Python)
python
import pywt

class WaveletDecomp(nn.Module):
    def __init__(self, wavelet='db4', levels=3):
        super().__init__()
        self.wavelet = wavelet
        self.levels = levels

    def forward(self, x):
        # x: [B, T]
        coeffs = []
        for i in range(x.size(0)):
            c = pywt.wavedec(x[i].cpu().numpy(), self.wavelet, level=self.levels)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值