小目标检测之改进的YOLOV11算法

一、 研究背景

随着无人机(UAV)技术的快速发展,航拍图像目标检测在农业、应急救援等领域应用广泛。但无人机视角存在小目标像素占比低目标尺度差异大背景复杂三大挑战,导致传统检测算法效果受限。本文提出MASF-YOLO,基于YOLOv11改进,在VisDrone2019数据集上验证有效性。

二、核心创新点

2.1 四大改进模块

模块 功能 创新点
P2检测层 保留浅层高分辨率特征 新增P2层解决小目标下采样丢失问题
MFAM 多尺度特征聚合 并行多分支卷积捕获上下文信息
IEMA 高效多尺度注意力 抑制背景噪声,增强目标区域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值