题意:编号为[0,m-1]的石头围成一圈,n只frog在起点0,第i只frog每次跳a[i]距离.
n<=1e4,m<=1e9 问所有青蛙跳到过的石头的编号之和.
第i只青蛙 第x次在编号为(x*a[i])%m的石头上.
a[i]*x +m*b =k*gcd(a,m) 两边同时%m
( a[i]*x )%m=(k*gcd(a,m)) %m 则第i只青蛙落在的石头和编号k*gcd(a[i],m)可以一一映射.(k*gcd(a,m)>m 则多余的部分显然也为gcd(a,m)的倍数)(很显然吗...)
第i只青蛙落在编号为k*gcd(a[i],m)的石头上 这部分可以用等差数列和来解决.但是2,3倍数 算6时显然重复.
先处理出m的因子,对gcd(a[i],m)的因子的倍数进行标记,ned[i]=1,num[i]=0. ,(num[i]为第i个因子等差当前算了多少次)
处理第i个因子时,ned[i]-num[i]表示该因子的等差数列和需要加多少次.
n<=1e4,m<=1e9 问所有青蛙跳到过的石头的编号之和.
第i只青蛙 第x次在编号为(x*a[i])%m的石头上.
a[i]*x +m*b =k*gcd(a,m) 两边同时%m
( a[i]*x )%m=(k*gcd(a,m)) %m 则第i只青蛙落在的石头和编号k*gcd(a[i],m)可以一一映射.(k*gcd(a,m)>m 则多余的部分显然也为gcd(a,m)的倍数)(很显然吗...)
第i只青蛙落在编号为k*gcd(a[i],m)的石头上 这部分可以用等差数列和来解决.但是2,3倍数 算6时显然重复.
先处理出m的因子,对gcd(a[i],m)的因子的倍数进行标记,ned[i]=1,num[i]=0. ,(num[i]为第i个因子等差当前算了多少次)
处理第i个因子时,ned[i]-num[i]表示该因子的等差数列和需要加多少次.
并对第i个因子倍数的num[j]更新即可.(处理方法很巧妙.)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int a[N],num[N],ned[N],fac[N];
int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
int main()
{
int T,cas=0;
scanf("%d",&T);
while(T--)
{
int cnt=0,n,m;
memset(num,0,sizeof(num));
memset(ned,0,sizeof(ned));
scanf("%d%d",&n,&m);
for(int i=1;i*i<=m;i++)
{
if(m%i==0)
{
fac[cnt++]=i;
if(i*i!=m)
fac[cnt++]=m/i;
}
}
sort(fac,fac+cnt);//
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
{
int x=gcd(m,a[i]);
for(int j=0;j<cnt;j++)
if(fac[j]%x==0)
ned[j]=1;
}
//don't ned fac[i]=m.
ll ans=0;
for(int i=0;i<cnt-1;i++)
{
if(ned[i]!=num[i])
{
ll t=(m-1)/fac[i];
//(0+t*fac[i])*(t+1)/2
ll res=(t*fac[i])*(t+1)/2;
ans+=res*(ned[i]-num[i]);
t=ned[i]-num[i];
for(int j=i+1;j<cnt-1;j++)
if(fac[j]%fac[i]==0)
num[j]+=t;
}
}
printf("Case #%d: %lld\n",++cas,ans);
}
return 0;
}