论文详读:LEMNA: Explaining Deep Learning based Security Applications

LEMNA是一种针对深度学习安全应用的高精度解释技术,旨在解决特征依赖和非线性局部边界问题。该方法基于融合lasso增强的混合回归模型,适用于二进制逆向工程和恶意软件分类等领域,帮助安全分析人员理解和排除分类错误,提高模型信任度。
摘要由CSDN通过智能技术生成

我以我ppt的内容顺序介绍一下这篇论文,希望有错误的地方大家可以帮我指出嘻嘻

1、论文出处

论文名:LEMNA: Explaining Deep Learning based Security Applications

作者:Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, Xinyu Xing(Wenbo Guo是宾夕法尼亚大学计算机系博士,并且在京东安全研发中心研究时发表了此篇论文)

论文发表:Proceedings of The 25th ACM Conference on Computer and Communications Security  CCS2018年优秀论文(CCS是安全领域四大顶会之一)

发表时间:2018年10月

 

2、概述

2.1主要内容

   本文介绍了一种新的方法——LEMNA,可以为基于深度学习的安全应用提出高精度的解释,该方法提出了基于fused lasso增强的混合回归模型,解决了现有的解释技术无法处理特征依赖和非线性局部边界问题。LEMNA可以帮助安全分析人员用来理解分类器行为,排除分类错误等。总的来说LEMNA本质上是一种解释技术

2.2研究背景

     目前深度神经网络在网络安全应用上展现了强大的潜力,并且在恶意软件分类,逆向工程等都取得了很好的效果。逆向工程指的是将二进制代码转化为汇编语言或其他语言代码,实现二次开发。其作用包括检测恶意软件、易受攻击的代码片段,挖掘漏洞,生成安全补丁等。深度学习在二进制逆向工程的应用主要包括使用RNN识别函数边界,定位函数类型特征等等。恶意软件分类指的是判断软件/文件是恶性的还是良性的,深度学习在这上面的应用主要是使用MLP模型进行大规模的恶意软件分类。

      但是由于神经网络的不透明特性,很难知道深度神经网络是依据什么如何做出分类决策的,因此提出了一种解释技术来解释深度神经网络是如何做出决策的,解释技术实际上就是用来找到对分类结果做出关键贡献的特征。

2.3研究动机

     由于我们关心的安全领域(如二进制逆向工程)使用的深度学习模型,深度学习模型包含多层网络,复杂度高,很难知道深层神经网络是如何做出某些决定的,安全从业人员难以信任深度学习模型,并且现有的解释技术在安全领域应用得非常少,并且效果不好,因此为了改进现有解释技术存在的问题,我们提出一种解释技术——LEMNA

2.4要解决的问题

       安全领域例如二进制逆向工程、恶意软件分类领域没有适用的高精度的解释技术,以及现有的解释技术存在的:无法处理特征依赖和非线性局部边界问题。

2.5遇到的挑战

       安全领域对于解释的精度(准确度)要求非常高,如果安全从业人员不能排除分类错误,那么这些错误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值