我以我ppt的内容顺序介绍一下这篇论文,希望有错误的地方大家可以帮我指出嘻嘻
1、论文出处
论文名:LEMNA: Explaining Deep Learning based Security Applications
作者:Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, Xinyu Xing(Wenbo Guo是宾夕法尼亚大学计算机系博士,并且在京东安全研发中心研究时发表了此篇论文)
论文发表:Proceedings of The 25th ACM Conference on Computer and Communications Security CCS2018年优秀论文(CCS是安全领域四大顶会之一)
发表时间:2018年10月
2、概述
2.1主要内容
本文介绍了一种新的方法——LEMNA,可以为基于深度学习的安全应用提出高精度的解释,该方法提出了基于fused lasso增强的混合回归模型,解决了现有的解释技术无法处理特征依赖和非线性局部边界问题。LEMNA可以帮助安全分析人员用来理解分类器行为,排除分类错误等。总的来说LEMNA本质上是一种解释技术。
2.2研究背景
目前深度神经网络在网络安全应用上展现了强大的潜力,并且在恶意软件分类,逆向工程等都取得了很好的效果。逆向工程指的是将二进制代码转化为汇编语言或其他语言代码,实现二次开发。其作用包括检测恶意软件、易受攻击的代码片段,挖掘漏洞,生成安全补丁等。深度学习在二进制逆向工程的应用主要包括使用RNN识别函数边界,定位函数类型特征等等。恶意软件分类指的是判断软件/文件是恶性的还是良性的,深度学习在这上面的应用主要是使用MLP模型进行大规模的恶意软件分类。
但是由于神经网络的不透明特性,很难知道深度神经网络是依据什么如何做出分类决策的,因此提出了一种解释技术来解释深度神经网络是如何做出决策的,解释技术实际上就是用来找到对分类结果做出关键贡献的特征。
2.3研究动机
由于我们关心的安全领域(如二进制逆向工程)使用的深度学习模型,深度学习模型包含多层网络,复杂度高,很难知道深层神经网络是如何做出某些决定的,安全从业人员难以信任深度学习模型,并且现有的解释技术在安全领域应用得非常少,并且效果不好,因此为了改进现有解释技术存在的问题,我们提出一种解释技术——LEMNA
2.4要解决的问题
安全领域例如二进制逆向工程、恶意软件分类领域没有适用的高精度的解释技术,以及现有的解释技术存在的:无法处理特征依赖和非线性局部边界问题。
2.5遇到的挑战
安全领域对于解释的精度(准确度)要求非常高,如果安全从业人员不能排除分类错误,那么这些错误