《知识图谱》赵军 阅读笔记(二)——第二章 知识表示

本文深入探讨了知识表示的理论与方法,包括经典逻辑、语义网络、框架、脚本等知识表示理论,以及语义网中的XML、RDF、OWL表示方法。知识图谱的表示框架涉及实体、概念、属性和关系,而数值化表示方法如符号和文本的数值化转换,旨在支持语义计算和机器学习。重点讨论了如何将知识图谱的语义信息转化为数值形式,以提升学习系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


知识表示是基于知识的人工智能应用中的核心部分。知识表示有五大重要角色,
1. 知识表示是一种代理,基于对事物的表示,我们无须实践,而是通过思考和推理就可以得到有关外部世界的结论。
2. 知识表示是一组本体论约定的集合,说明我们以什么样的方式来思考世界。
3. 知识表示是智能推理的组成部分:推理需要对知识进行表示,但知识表示不是推理的全部。
4. 知识表示是高效计算的媒介,通过对知识进行有效组织,支持高效的推理。
5. 知识表示是人类表达的媒介,基于通用表示框架,方便人们表达和分享对世界的认知。

2.1 经典知识表示理论

2.1.1 逻辑

逻辑
从简单到复杂分为:
命题逻辑、一阶谓词逻辑、高阶逻辑。
1.命题逻辑:具有最简单的语法,定义了具有真假值的原子命题,通过与、或、非、蕴含、当且仅当等将多个原子命题组合成复合命题,而推理过程则根据逻辑连接词的真值表进行推导,适合进行简单的推理。这是一种非常简单但是非常实用的逻辑。
2. 一阶谓词逻辑(一阶逻辑):在命题逻辑基础上引入了全称量词和存在量词,使得一阶逻辑可以量化实体和概念。它具有完备的逻辑推理算法。
3.高阶逻辑:量化谓词或集合、二阶量化集合、三阶量化集合的集合
优点
谓词逻辑是一种强大的知识表示语言,一阶谓词逻辑具有完备的逻辑推理算法,它可以保证知识的一致性,也能够确保推理结果的正确性。它可以表达对象集合的属性,而不用逐一列举所有对象。
缺点
难以表示过程性知识和不确定性知识。特别是在数据量较大时,工作效率非常低。

2.1.2 语义网络

语义网络是奎利恩等人提出的一种模型。语义网络是一个通过语义关系连接的概念网络,它将知识表示为相互连接的点和边的模式,其中节点表示实体、事件、值等,边表示对象之间的语义关系。语义单元的三元组形式表示为:<节点1,关系,节点2>。
语义网络的关系类型有:
实例关系(ISA):
具体与抽象,一个事物是另一个事物的一个实例,如“小王是一个人”。
分类关系(AKO):
一个事物是另一个事物的一种类型,如“篮球是一种球”
成员关系:
个体与集体,一个事物是另一个事物的成员,如“小于是一个公务员”
属性关系:
事物和其属性之间的关系,如人的身高
聚合关系:
组织或结构特征的部分与整体的关系,如“凳子是桌子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值