《知识图谱》赵军 阅读笔记(三)——第三章 知识体系构建和知识融合

本文详细探讨了知识图谱的构建方法,包括人工构建的六个阶段和自动构建的三种方式,强调了知识体系的领域定位和复用。同时,介绍了知识融合的重要性,涉及框架匹配、实体对齐和冲突检测与消解等关键技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


事实上,知识图谱不仅包含具体的实例知识数据,还包括了对知识数据的描述和定义,这部分对数据进行描述和定义的“元”数据被称为知识体系(Schema)或者本体(Ontology)。能够以一种统一的形式(三元组形式)表示实例型数据和描述型数据,是知识图谱得以广泛应用的重要特点。
知识融合通过框架匹配和实例对齐,把分散的知识资源联合起来,可以极大的增加知识图谱的覆盖领域和共享程度。

3.1 知识体系构建

知识体系个方面核心内容:
1.对概念的分类
2.概念属性的描述
3.概念之间相互关系
知识体系的基本形态的五个层次:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值