CINTA学习之无穷递降法的运用

无穷递降法的使用一例

题目如下(见书本p16第6题):
假设 g a ≡ 1 ( m o d m ) g^{a} ≡ 1 \pmod m ga1(modm) g b ≡ 1 ( m o d m ) g^{b} ≡ 1 \pmod m gb1(modm),请证明:
g g c d ( a , b ) ≡ 1 ( m o d m ) g^{gcd(a,b)} \equiv1\pmod m ggcd(a,b)1(modm)
证明思路:
类似于欧几里得算法的证明,

  1. a = b a=b a=b时原命题显然成立.
  2. a ≠ b a\neq b a=b时,不妨设 a > b a>b a>b,若证得
    g a − b ≡ 1 ( m o d m ) g^{a-b}\equiv 1\pmod m gab1(modm)
    则同理有 g a − 2 b g^{a-2b} ga2b, g a − 3 b g^{a-3b} ga3b
    除法算法有: ∃ q , r ∈ Z , a = q b + r , 0 ≤ r < b \exists q,r\in\mathbb{Z},a=qb+r,0\leq r<b q,rZ,a=qb+r,0r<b
    即有:
    g a ≡ 1 ( m o d m ) , g b ≡ 1 ( m o d m ) ⇒ g r ≡ 1 ( m o d m ) g^{a} ≡ 1 \pmod m,g^{b} ≡ 1 \pmod m\Rightarrow g^{r}\equiv1\pmod m ga1(modm),gb1(modm)gr1(modm)
    从而类似于欧几里得算法地,同理有:
    g b ≡ 1 ( m o d m ) , g r ≡ 1 ( m o d m ) , r 1 = b   m o d   r ⇒ g r 1 ≡ 1 ( m o d m ) g^{b} ≡ 1 \pmod m,g^{r} ≡ 1 \pmod m,r_{1}=b \bmod r\Rightarrow g^{r_{1}}\equiv1\pmod m gb1(modm),gr1(modm),r1=bmodrgr11(modm)
    g r ≡ 1 ( m o d m ) , g r 1 ≡ 1 ( m o d m ) , r 2 = r   m o d   r 1 ⇒ g r 2 ≡ 1 ( m o d m ) g^{r} ≡ 1 \pmod m,g^{r_{1}} ≡ 1 \pmod m,r_{2}=r \bmod r_{1}\Rightarrow g^{r_{2}}\equiv1\pmod m gr1(modm),gr11(modm),r2=rmodr1gr21(modm)
    … …
    g r k − 2 ≡ 1 ( m o d m ) , g r k − 1 ≡ 1 ( m o d m ) , r k = r k − 2   m o d   r k − 1 = g c d ( a , b ) ⇒ g g c d ( a , b ) ≡ 1 ( m o d m ) g^{r_{k-2}} ≡ 1 \pmod m,g^{r_{k-1}} ≡ 1 \pmod m,r_{k}=r_{k-2}\bmod r_{k-1}=gcd(a,b)\Rightarrow g^{gcd(a,b)}\equiv1\pmod m grk21(modm),grk11(modm),rk=rk2modrk1=gcd(a,b)ggcd(a,b)1(modm)
    从而原命题获证.
    故欲证原命题,只需证:
    g a − b ≡ 1 ( m o d m ) g^{a-b}\equiv 1\pmod m gab1(modm)
    由题意有:
    g a ≡ g b ( m o d m ) g^{a}\equiv g^{b}\pmod m gagb(modm)
    g b ≡ 1 ( m o d m ) g^{b}\equiv1\pmod m gb1(modm)知: g c d ( g b , m ) = g c d ( g b   m o d   m , m ) = g c d ( 1 , m ) = 1 gcd(g^{b},m)=gcd(g^{b} \bmod m,m)=gcd(1,m)=1 gcd(gb,m)=gcd(gbmodm,m)=gcd(1,m)=1
    由同余的消去律有:
    g a − b ≡ 1 ( m o d m ) g^{a-b}\equiv 1\pmod m gab1(modm)
    从而,原命题得证.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值