作者:Pascal Vincent 来源
这是Pascal Vincent在2015年深度学习夏季学校讲的机器学习入门。我们给了简单的注解,浅显易懂,值得一读。
AI的两种不同的思路:神经元网络和符号主义。最后是学习和概率模型获胜,从而催生了机器学习。
60年代的AI。
现在的机器学习是跨学科综合体。
机器学习:研究基本原理,开发神奇算法,利用收集的数据生成预测函数,能够应用到新的相似数据上。
机器学习的主要材料是数据!数据表示成很多的同质的样本,最好每个样本表示成一个数字向量。
数据预处理,提取体征,表示成向量,和目标值。
问题空间:样本大小n,特征维度d,目标维度m。
将数据变成一系列样本。一个样本需要保存哪些信息,需要预测什么。
将样本转换成一个输入向量。
将数据集在一个高维空间表示。
举例:nearest neighbor classifier:根据某种距离计算,在训练集中找出最近的邻居,然后预测新的样本和邻居有同样的类别。
机器学习任务(问题类型):监督学习,无监督学习,强化学习。
监督学习:分类问题,回归问题。
无监督学习:概率分布模型,发现数据的内部结构(聚类,降维,表示学习)
强化学习:从与环境的交互决策过程中获取最大化回报。
学习阶段:训练,预测。目标不是记住训练集,而是要能够在新的未来的样本上很好的泛化预测。
举例:一维回归。
监督学习任务示例。
一个机器学习算法一般对应着三个部分:函数家族(模型族),评估质量(损失函数),找到最好的函数(模型)(优化)。
评估一个函数(模型)的质量,寻找最好的函数(模型)。
评估模型的标准。
对某些机器学习任务的标准损失函数。
有的损失函数很难直接去优化,所以需要替代损失函数。
期望风险:对于将来的从不知道的分布来的无限多的样本,我们的预测平均来说将会做的多差。
经验风险:对于有限的样本集,我们的预测平均来说会做的多差。
最小化经验风险。
评估泛化错误。
简单的训练/测试流程。将样本集随机打乱,然后分成两个部分,训练集和测试集。用训练集来选择/优化/发现最好的预测函数(模型),然后用测试集来评估模型的泛化能力。
模型选择,实际上是从函数家族中选择一个特殊函数。
举例:参数化函数家族。比如常数,线性,多项式。
一个学习方法的能力。
有效能力,能力控制的超参数。
常用的分类器和它们的学些参数,超参数。
选择算法和调参来保证泛化,避免欠拟合和过拟合。
举例:二维分类。函数太差,能力有限,欠拟合。
函数太强,能力高,过拟合。
最优的,最好的泛化能力。
泛化错误分解。
方差的影响因素。
最优化和偏差方差的困境。
模型选择指南!!!
举例:模型的超参数选择。
几个问题:
如果选择在训练集上效果最好的超参数会怎么样?我们倾向于选择什么?
模型选择流程总结。
集成算法。
对于Bagging,其驱动的原则是通过独立的建立几种预测器进行预测,然后平均这些预测器的预测结果。在平均意义下,合并后的预测器因为减小了方差,因此其通常优于单个的预测器。
对于Boosting ,基本的预测器被以此建立,并且每一个预测器都尽量去减小合并后的预测器某一项的偏差。其动机是通过合并几个弱模型从而形成一个强有力的集成。
Bagging 减少回归问题的方差。
如何从线性预测器获取非现象预测器。
分层表示。神经元网络。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市”、“智能驾驶”;新模式:“财富空间”、“数据科学家”、“赛博物理”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com