机器学习入门-评价标准

线性回归

import numpy as np 
import matplotlib.pyplot as plt
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, 100)
X.shape
(100, 1)
X
array([[-0.89951778],
       [ 2.50872999],
       [ 2.4353359 ],
       [-0.86763174],
       [-2.72925348],
       [-1.45719219],
       [-0.54025571],
       [-0.53760242],
       [ 1.85970595],
       [ 1.57230038],
       [ 1.56990009],
       [ 2.28305174],
       [-2.59112168],
       [-2.64334139],
       [-2.76567062],
       [ 0.68005198],
       [ 0.33708501],
       ...
       [-1.01140515],
       [ 2.74215254],
       [-2.73004737],
       [-0.51508284]])
y
array([ 0.79647154,  8.88232529,  8.30787094, -0.05238261,  2.47342507,
        1.9590172 ,  0.49101351,  0.62394121,  5.72435864,  4.97987883,
        5.3199278 ,  7.58792764,  3.82694073,  2.11215395,  2.77798657,
        3.69331054,  2.35618172,  3.97818497,  1.94798774,  8.45894137,
        3.66989025,  3.99332214,  0.89851189,  0.73492175,  3.38890123,
        5.19282411,  0.68377759,  1.61374746,  2.98310585,  0.59630839,
        2.49700182,  8.92275413,  2.70647328, 10.61161191,  0.61439641,
        1.86262655,  3.91924111,  2.741702  ,  0.76651707, -0.55544964,
        2.99670829,  3.48079184,  4.25653902,  1.21532141,  6.71560707,
        3.39264928,  3.71641698,  8.00766354,  2.91326196,  2.09527705,
        4.01907449,  1.2866292 ,  2.45767153,  2.55749774,  2.0515609 ,
        5.2849331 ,  3.6588314 ,  1.4383397 ,  9.3591929 ,  0.77173848,
        1.08971906,  0.77206578,  3.36298872,  3.47117943,  3.62177969,
        2.61081094,  1.28841343,  8.23299834,  6.39067367,  2.34850602,
        2.50032685,  2.11977966,  1.68345708,  5.56751009,  1.8023396 ,
        2.53554222, 10.5724512 ,  1.52939331,  2.88805634,  2.7674932 ,
        2.46133868,  2.15665785,  6.2066511 ,  3.72760328,  6.19854463,
        3.9359559 ,  7.82418792,  1.5854534 ,  2.13656437,  5.4053754 ,
        5.77317218,  3.30323698,  5.0131409 ,  3.84984313,  2.22021921,
        3.08100348,  1.30739181,  9.26113351,  3.28547074,  1.739159  ])
x
array([-0.89951778,  2.50872999,  2.4353359 , -0.86763174, -2.72925348,
       -1.45719219, -0.54025571, -0.53760242,  1.85970595,  1.57230038,
        1.56990009,  2.28305174, -2.59112168, -2.64334139, -2.76567062,
        0.68005198,  0.33708501,  0.08753101, -0.14196215,  2.35022604,
       -2.88592106,  0.9784988 , -0.16498468, -0.83966014,  0.09322257,
        1.6060534 , -1.90553413, -2.49284729,  0.13463158, -1.36955521,
        0.84564178,  2.93781771, -2.69662918,  2.87649987, -0.19828651,
       -0.84546172, -1.16323851, -1.30587637, -0.43285034, -1.195054  ,
       -2.37222469, -2.59924062, -0.33995236, -1.16191355,  2.1116139 ,
       -0.67849173,  1.49261461,  2.64106724, -1.12484179,  0.17088782,
       -0.87039745,  0.03791021,  0.65267102, -0.07678643, -2.834112  ,
       -2.98717084, -2.54342704, -0.46389904,  2.80043107,  0.15577566,
       -0.59394665,  0.04709297,  0.72619359, -0.69563873, -0.98681543,
       -2.8884292 , -0.10776948,  2.31101697,  2.47586736, -0.54017805,
        0.68440894, -1.36355552,  0.55904675,  1.95387484, -2.22727105,
       -1.78151621,  2.92648781,  0.74270975,  0.51638477,  0.49765519,
       -1.21760458,  0.24396438,  2.18207184,  1.44166375,  1.50676197,
        0.94095377,  2.4879327 , -2.74947577, -2.35523714,  2.17110775,
        2.06786061, -2.08955051,  1.54528951,  1.57435462, -0.41458426,
        0.12795122, -1.01140515,  2.74215254, -2.73004737, -0.51508284])
from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X,y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
y_predict = lin_reg.predict(X)
plt.scatter(x,y)
plt.plot(x,y_predict,color='r')
plt.show()

在这里插入图片描述

(X**2).shape
(100, 1)
X2 = np.hstack([X,X**2])
X2.shape
(100, 2)
lin_reg2= LinearRegression()
lin_reg2.fit(X2,y)
y_predict2 = lin_reg2.predict(X2)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r')
plt.show()

在这里插入图片描述

lin_reg2.coef_
array([1.04309307, 0.51881223])
lin_reg2.intercept_
2.085560841403531
import numpy as np 
import matplotlib.pyplot as plt
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, 100)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree = 2)
poly.fit(X)
X2 = poly.transform(X)
X2[:5,:]
X[:5,:]
array([[-1.22238232],
       [-2.7805248 ],
       [-1.66953336],
       [ 1.9736027 ],
       [-0.44709313]])
X2[:5,:]
array([[ 1.        , -1.22238232,  1.49421854],
       [ 1.        , -2.7805248 ,  7.73131818],
       [ 1.        , -1.66953336,  2.78734164],
       [ 1.        ,  1.9736027 ,  3.89510764],
       [ 1.        , -0.44709313,  0.19989227]])
X[:5,:]**2
array([[1.49421854],
       [7.73131818],
       [2.78734164],
       [3.89510764],
       [0.19989227]])
from sklearn.linear_model import LinearRegression
lin_reg2 = LinearRegression()
lin_reg2.fit(X2,y)
y_predict2 = lin_reg2.predict(X2)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r')
plt.show()

在这里插入图片描述

lin_reg2.coef_
array([0.        , 0.97132627, 0.52604774])
lin_reg2.intercept_
2.106219901302948
X = np.arange(1, 11).reshape(-1, 2)
X
array([[ 1,  2],
       [ 3,  4],
       [ 5,  6],
       [ 7,  8],
       [ 9, 10]])
poly = PolynomialFeatures(degree=2)
poly.fit(X)
X2 = poly.transform(X)
X2.shape
(5, 6)
X2
array([[  1.,   1.,   2.,   1.,   2.,   4.],
       [  1.,   3.,   4.,   9.,  12.,  16.],
       [  1.,   5.,   6.,  25.,  30.,  36.],
       [  1.,   7.,   8.,  49.,  56.,  64.],
       [  1.,   9.,  10.,  81.,  90., 100.]])
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, 100)

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

poly_reg = Pipeline([
    ("poly",PolynomialFeatures(degree=2)),
    ("std_scaler",StandardScaler()),
    ("lin_reg",LinearRegression())
])
poly_reg.fit(X,y)
y_predict = poly_reg.predict(X)

在这里插入图片描述

plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()

在这里插入图片描述

from sklearn.metrics import mean_squared_error
y_predict = lin_reg.predict(X)
mean_squared_error(y,y_predict)
3.4992559719694816
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler

def PolynomialRegression(degree):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])
poly2_reg = PolynomialRegression(degree=2)
poly2_reg.fit(X, y)
Pipeline(memory=None,
         steps=[('poly',
                 PolynomialFeatures(degree=2, include_bias=True,
                                    interaction_only=False, order='C')),
                ('std_scaler',
                 StandardScaler(copy=True, with_mean=True, with_std=True)),
                ('lin_reg',
                 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
                                  normalize=False))],
         verbose=False)
y2_predict = poly2_reg.predict(X)
mean_squared_error(y, y2_predict)
1.1365841098986502

plt.scatter(x, y)
plt.plot(np.sort(x), y2_predict[np.argsort(x)], color='r')
plt.show()

在这里插入图片描述

poly100_reg = PolynomialRegression(degree=100)
poly100_reg.fit(X, y)

y100_predict = poly100_reg.predict(X)
mean_squared_error(y, y100_predict)
0.6663717898573763
plt.scatter(x, y)
plt.plot(np.sort(x), y100_predict[np.argsort(x)], color='r')
plt.show()

在这里插入图片描述

X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
y_plot = poly100_reg.predict(X_plot)

plt.scatter(x, y)
plt.plot(X_plot[:,0], y_plot, color='r')
plt.axis([-3, 3, 0, 10])
plt.show()

在这里插入图片描述

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)
y_predict = lin_reg.predict(X_test)
mean_squared_error(y_test,y_predict)
3.104170213714221
poly2_reg = PolynomialRegression(degree=2)
poly2_reg.fit(X_train, y_train)
y2_predict = poly2_reg.predict(X_test)
mean_squared_error(y_test, y2_predict)
1.2217154614153332
poly10_reg = PolynomialRegression(degree=10)
poly10_reg.fit(X_train, y_train)
y10_predict = poly10_reg.predict(X_test)
mean_squared_error(y_test, y10_predict)
1.0900969891737575
poly100_reg = PolynomialRegression(degree=100)
poly100_reg.fit(X_train, y_train)
y100_predict = poly100_reg.predict(X_test)
mean_squared_error(y_test, y100_predict)
910991014982.5587
np.random.seed(666)
x = np.random.uniform(-3.0, 3.0, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
X_train.shape
(75, 1)

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

train_score = []
test_score = []
for i in range(1, 76):
    lin_reg = LinearRegression()
    lin_reg.fit(X_train[:i], y_train[:i])
    
    y_train_predict = lin_reg.predict(X_train[:i])
    train_score.append(mean_squared_error(y_train[:i], y_train_predict))
    
    y_test_predict = lin_reg.predict(X_test)
    test_score.append(mean_squared_error(y_test, y_test_predict))
plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label="train")
plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label="test")
plt.legend()
plt.show()

在这里插入图片描述

def plot_learning_curve(algo, X_train, X_test, y_train, y_test):
    train_score = []
    test_score = []
    for i in range(1, len(X_train)+1):
        algo.fit(X_train[:i], y_train[:i])
    
        y_train_predict = algo.predict(X_train[:i])
        train_score.append(mean_squared_error(y_train[:i], y_train_predict))
    
        y_test_predict = algo.predict(X_test)
        test_score.append(mean_squared_error(y_test, y_test_predict))
        
    plt.plot([i for i in range(1, len(X_train)+1)], 
                               np.sqrt(train_score), label="train")
    plt.plot([i for i in range(1, len(X_train)+1)], 
                               np.sqrt(test_score), label="test")
    plt.legend()
    plt.axis([0, len(X_train)+1, 0, 4])
    plt.show()
    
plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test)

在这里插入图片描述

from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

def PolynomialRegression(degree):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])

poly2_reg = PolynomialRegression(degree=2)
plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test)

在这里插入图片描述


poly20_reg = PolynomialRegression(degree=20)
plot_learning_curve(poly20_reg, X_train, X_test, y_train, y_test)

在这里插入图片描述

import numpy as np
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=666)
from sklearn.neighbors import KNeighborsClassifier

best_k, best_p, best_score = 0, 0, 0
for k in range(2, 11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        if score > best_score:
            best_k, best_p, best_score = k, p, score
            
print("Best K =", best_k)
print("Best P =", best_p)
print("Best Score =", best_score)
Best K = 3
Best P = 4
Best Score = 0.9860917941585535

交叉验证

from sklearn.model_selection import cross_val_score

knn_clf = KNeighborsClassifier()
cross_val_score(knn_clf, X_train, y_train)
array([0.98895028, 0.97777778, 0.96629213])
best_knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=2, p=2)
best_knn_clf.fit(X_train, y_train)
best_knn_clf.score(X_test, y_test)
0.980528511821975
from sklearn.model_selection import GridSearchCV

param_grid = [
    {
        'weights': ['distance'],
        'n_neighbors': [i for i in range(2, 11)], 
        'p': [i for i in range(1, 6)]
    }
]

grid_search = GridSearchCV(knn_clf, param_grid, verbose=1)
grid_search.fit(X_train, y_train)

解决高方差的手段:
1.降低模型的复杂度
2.减少数据维度,降噪
3.增加样本数
4.使用验证集
5.模型正则化

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
x = np.random.uniform(-3.0, 3.0, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x + 3 + np.random.normal(0, 1, size=100)
plt.scatter(x, y)
plt.show()

在这里插入图片描述

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
def PolynomialRegression(degree):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])
np.random.seed(666)
X_train, X_test, y_train, y_test = train_test_split(X, y)
poly_reg = PolynomialRegression(degree=20)
poly_reg.fit(X_train, y_train)
y_poly_predict = poly_reg.predict(X_test)
mean_squared_error(y_test, y_poly_predict)
167.9401086890128
X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
y_plot = poly_reg.predict(X_plot)

plt.scatter(x, y)
plt.plot(X_plot[:,0], y_plot, color='r')
plt.axis([-3, 3, 0, 6])
plt.show()

在这里插入图片描述

def plot_model(model):
    X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
    y_plot = model.predict(X_plot)

    plt.scatter(x, y)
    plt.plot(X_plot[:,0], y_plot, color='r')
    plt.axis([-3, 3, 0, 6])
    plt.show()

plot_model(poly_reg)

在这里插入图片描述

使用岭回归

from sklearn.linear_model import Ridge

def RidgeRegression(degree, alpha):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("ridge_reg", Ridge(alpha=alpha))
    ])
ridge1_reg = RidgeRegression(20, 0.0001)
ridge1_reg.fit(X_train, y_train)

y1_predict = ridge1_reg.predict(X_test)
mean_squared_error(y_test, y1_predict)
1.3233492754155471
plot_model(ridge1_reg)

在这里插入图片描述

ridge2_reg = RidgeRegression(20, 1)
ridge2_reg.fit(X_train, y_train)

y2_predict = ridge2_reg.predict(X_test)
mean_squared_error(y_test, y2_predict)
1.1888759304218448
plot_model(ridge2_reg)

在这里插入图片描述

LASSO Regression

from sklearn.linear_model import Lasso

def LassoRegression(degree, alpha):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lasso_reg", Lasso(alpha=alpha))
    ])

lasso1_reg = LassoRegression(20, 0.01)
lasso1_reg.fit(X_train, y_train)

y1_predict = lasso1_reg.predict(X_test)
mean_squared_error(y_test, y1_predict)
1.1496080843259964
plot_model(lasso1_reg)

在这里插入图片描述

lasso1_reg = LassoRegression(20, 0.1)
lasso1_reg.fit(X_train, y_train)

y1_predict = lasso1_reg.predict(X_test)
mean_squared_error(y_test, y1_predict)
plot_model(lasso1_reg)

在这里插入图片描述

mean_squared_error(y_test, y1_predict)
1.1213911351818648

lasso 趋向与使得一部分theta值变为0。所以可以作为特征选择使用

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.normal(0, 1, size=(200, 2))
y = np.array((X[:,0]**2+X[:,1]**2)<1.5, dtype='int')
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

在这里插入图片描述

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

def PolynomialLogisticRegression(degree):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression())
    ])
poly_log_reg = PolynomialLogisticRegression(degree=2)
poly_log_reg.fit(X, y)
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.normal(0, 1, size=(200, 2))
y = np.array((X[:,0]**2+X[:,1])<1.5, dtype='int')
for _ in range(20):
    y[np.random.randint(200)] = 1
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

在这里插入图片描述

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)
log_reg.score(X_train, y_train)
0.7933333333333333
log_reg.score(X_test, y_test)
0.86

OvR 和 OvO

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:,:2]
y = iris.target
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(multi_class='ovr',solver='liblinear')
log_reg.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='ovr', n_jobs=None, penalty='l2',
                   random_state=None, solver='liblinear', tol=0.0001, verbose=0,
                   warm_start=False)
log_reg.score(X_test, y_test)
0.6578947368421053
log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
log_reg2.fit(X_train, y_train)
log_reg2.score(X_test, y_test)
0.7894736842105263
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
log_reg2.fit(X_train, y_train)
log_reg2.score(X_test, y_test)
1.0
from sklearn.multiclass import OneVsRestClassifier

ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train, y_train)
ovr.score(X_test, y_test)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)





0.9473684210526315
import numpy as np
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()

y[digits.target==9] = 1
y[digits.target!=9] = 0

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
log_reg.score(X_test, y_test)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)





0.9755555555555555
y_log_predict = log_reg.predict(X_test)
def TN(y_true, y_predict):
    assert len(y_true) == len(y_predict)
    return np.sum((y_true == 0) & (y_predict == 0))
def FP(y_true, y_predict):
    assert len(y_true) == len(y_predict)
    return np.sum((y_true == 0) & (y_predict == 1))
def FN(y_true, y_predict):
    assert len(y_true) == len(y_predict)
    return np.sum((y_true == 1) & (y_predict == 0))
def TP(y_true, y_predict):
    assert len(y_true) == len(y_predict)
    return np.sum((y_true == 1) & (y_predict == 1))

print(TN(y_test, y_log_predict))
print(FP(y_test, y_log_predict))
print(FN(y_test, y_log_predict))
print(TP(y_test, y_log_predict))
403
2
9
36
def confusion_matrix(y_true, y_predict):
    return np.array([
        [TN(y_true, y_predict), FP(y_true, y_predict)],
        [FN(y_true, y_predict), TP(y_true, y_predict)]
    ])

confusion_matrix(y_test, y_log_predict)
array([[403,   2],
       [  9,  36]])
def precision_score(y_true, y_predict):
    tp = TP(y_true, y_predict)
    fp = FP(y_true, y_predict)
    try:
        return tp / (tp + fp)
    except:
        return 0.0

def recall_score(y_true, y_predict):
    tp = TP(y_true, y_predict)
    fn = FN(y_true, y_predict)
    try:
        return tp / (tp + fn)
    except:
        return 0.0
precision_score(y_test, y_log_predict)
0.9473684210526315
recall_score(y_test, y_log_predict)
0.8
from sklearn.metrics import confusion_matrix

confusion_matrix(y_test, y_log_predict)

array([[403,   2],
       [  9,  36]])
from sklearn.metrics import precision_score

precision_score(y_test, y_log_predict)
0.9473684210526315
from sklearn.metrics import recall_score

recall_score(y_test, y_log_predict)
0.8
from sklearn.metrics import f1_score
y_pred = [0, 1, 1, 1, 2, 2]
y_true = [0, 1, 0, 2, 1, 1]

print(f1_score(y_true, y_pred, average='macro'))  
print(f1_score(y_true, y_pred, average='weighted')) 
0.3333333333333333
0.38888888888888884
import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets

digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()

y[digits.target==9] = 1
y[digits.target!=9] = 0
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_predict = log_reg.predict(X_test)
from sklearn.metrics import f1_score
f1_score(y_test, y_predict)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)





0.8674698795180723
from sklearn.metrics import confusion_matrix

confusion_matrix(y_test, y_predict)
array([[403,   2],
       [  9,  36]])
from sklearn.metrics import precision_score

precision_score(y_test, y_predict)
0.9473684210526315
log_reg.decision_function(X_test)[:10]
array([-22.05699096, -33.02939331, -16.21333688, -80.37914686,
       -48.25125897, -24.54005571, -44.39169519, -25.04292453,
        -0.97829172, -19.71744304])
decision_scores = log_reg.decision_function(X_test)
print(np.min(decision_scores))
print(np.max(decision_scores))
-85.68607304951716
19.889580375580753
import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets

digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()

y[digits.target==9] = 1
y[digits.target!=9] = 0
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
decision_scores = log_reg.decision_function(X_test)
/root/anaconda3/envs/python36/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
  FutureWarning)
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score

precisions = []
recalls = []
thresholds = np.arange(np.min(decision_scores), np.max(decision_scores), 0.1)
for threshold in thresholds:
    y_predict = np.array(decision_scores >= threshold, dtype='int')
    precisions.append(precision_score(y_test, y_predict))
    recalls.append(recall_score(y_test, y_predict))
plt.plot(thresholds, precisions)
plt.plot(thresholds, recalls)
plt.show()

在这里插入图片描述

Precision-Recall 曲线

plt.plot(precisions, recalls)
plt.show()

在这里插入图片描述

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_test, decision_scores)

plt.plot(thresholds, precisions[:-1])
plt.plot(thresholds, recalls[:-1])
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pRFhQgtL-1585400100885)(output_104_0.png)]
在这里插入图片描述

plt.plot(precisions, recalls)
plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
def split(X, y, d, value):
    index_a = (X[:,d] <= value)
    index_b = (X[:,d] > value)
    return X[index_a], X[index_b], y[index_a], y[index_b]

from collections import Counter
from math import log

def entropy(y):
    counter = Counter(y)
    res = 0.0
    for num in counter.values():
        p = num / len(y)
        res += -p * log(p)
    return res

def try_split(X, y):
    
    best_entropy = float('inf')
    best_d, best_v = -1, -1
    for d in range(X.shape[1]):
        sorted_index = np.argsort(X[:,d])
        for i in range(1, len(X)):
            if X[sorted_index[i], d] != X[sorted_index[i-1], d]:
                v = (X[sorted_index[i], d] + X[sorted_index[i-1], d])/2
                X_l, X_r, y_l, y_r = split(X, y, d, v)
                e = entropy(y_l) +entropy(y_r)
                if e < best_entropy:
                    best_entropy, best_d, best_v = e, d, v
    return best_entropy, best_d, best_v
best_entropy, best_d, best_v = try_split(X, y)
print("best_entropy =", best_entropy)
print("best_d =", best_d)
print("best_v =", best_v)
best_entropy = 0.6931471805599453
best_d = 0
best_v = 2.45
X1_l, X1_r, y1_l, y1_r = split(X, y, best_d, best_v)
print(entropy(y1_l))
0.0
entropy(y1_r)
0.6931471805599453
best_entropy2, best_d2, best_v2 = try_split(X1_r, y1_r)
print("best_entropy =", best_entropy2)
print("best_d =", best_d2)
print("best_v =", best_v2)
best_entropy = 0.4132278899361904
best_d = 1
best_v = 1.75
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值