【智能制造】工业软件:智能制造的大脑

软件是实现智能互联的第一推动力。工业软件是智能制造的思维认识,是感知控制、信息传输和分析决策背后的世界观、价值观和方法论,是智能制造的大脑。工业软件支撑并定义了智能制造,构造了数据流动的规则体系。本文来自:工评圈,原文发表于《中国工业评论》杂志2018年第2-3期,经授权由《走向智能论坛》微信公众号推荐阅读。

工业软件:智能制造的大脑

(配图来自网络)

工业软件是智能制造的思维认识,是感知控制、信息传输和分析决策背后的世界观、价值观和方法论,是智能制造的大脑。工业软件支撑并定义了智能制造,构造了数据流动的规则体系。

工业软件在实现智能制造的过程中扮演了如此重要的角色,所以要实现智能制造,需要先认识工业软件,还要从工业软件的角度看待未来制造业的发展方向。

制造业是一个国家国民经济的主要支柱,是富民强国之本,也是我国经济结构转型的主战场。目前,我国已是制造大国,但还不是制造强国。未来,转变制造业的发展方式,实现从“中国制造”到“中国智造”的飞跃,是我国迈向制造强国的必由之路。

工业软件在实现智能制造的过程中扮演了如此重要的角色,所以要实现智能制造,需要先认识工业软件,还要从工业软件的角度看待未来制造业的发展方向。

历史与现状

我国工业软件经历了从无到有,缓慢发展的过程,走过了一条蜿蜒崎岖的路。20世纪80年代,中国人对工业软件的认识还几乎为零。但是随着IBM大型机、VAX小型机、Apolo工作站的引入,这些昂贵的设备上附带的一些CG、CAD软件打开了一扇窗户,才让中国人一睹了工业软件的“芳容”。

但是,核心工业软件的制高点已被发达国家占领。目前,仅在中国工业软件市场上,80%的设计软件、50%的制造软件、95%的服务软件被国外品牌占领,国产工业软件在夹缝中求生存。造成这种现象的原因有很多:

对工业软件的重视程度依然不够,复合型人才奇缺

工业软件的开发与其他应用软件的开发不同。工业软件是工业技术与信息技术融合的产物,要求与应用的行业更加贴近,它的开发过程涉及两个方面:开发过程的特殊性与人才培养的特殊性。要求开发者不仅精通软件开发,还要熟悉相关行业,需要依靠行业专家与软件开发人员的紧密配合,单靠软件开发人员是无法完成的。另外,与IT通用软件相比,工业软件有很强的继承性,需要行业经验的长期积累,专业性强且应用面窄,优秀的工业软件需要专业研发团队多年的工作积累,才能继承、深化、完善。

而现在的情况是,政府与企业还将工业软件视同应用软件,没有认识到工业软件基础平台化的重要性,缺少对系统性软件的持续投入;部委立项的科技攻关项目强调短平快,软件研发大多附着在大项目中,缺少对工业软件的基础性研究。

这说明我国制造业对工业软件的认识存在问题,平台工业软件的开发难度大,但是意义更大,如国产的计算机操作系统,至今大部分软件平台的操作系统市场还是国外厂商的天下,虽然我们也有基于Linux二次开发的操作系统,可是仍不被市场认可,由此可见我们不该回避这个问题,更不应该将某个行业的应用软件等同于平台化的工业软件。

复合型人才的缺口是制约国产工业软件发展的另一个瓶颈。工业软件的开发工作量巨大,而且还需要不断地积累完善,对开发人员的IT技能水平与工业专业水平要求都很高,而中国目前的人才只能满足企业使用国外工业软件的需求,很多类型的工业软件都缺少开发人才。

造成这种现象有多种原因:软件业与制造业发展不平衡,同样是软件开发,工业软件对编程人员要求比普通软件要高,提供的薪水却不如普通IT企业,技术精英转到IT业,人才离开了生产,自然也就没人去从事工业软件的开发。还有,高校缺乏合理的工业软件人才培养体系,目前我国院校中开设工业软件专业的几乎没有,虽然部分大学已经在进行工业软件人才培养的探索,且小有成效,但是仅强调工业化对软件人才培养的新要求,却没有建立起科学的人才培养方案,如隔靴搔痒,对促进国产工业软件的发展意义不大。

国产工业软件的“生态”混乱,产业链脆弱

我国的工业软件产业价值链还不完善,从研发到销售的生态稍显混乱,产业链存在自主技术不够与引进技术不消化的问题。制造业企业不仅没有能力独立开发工业软件,也不愿意用自主产品,断掉了国产工业软件成长的养分,又何谈发展。

积极因素

在看到国产工业软件发展存在诸多问题的同时,也应看到存在很多积极因素。根据赛迪顾问发布的《2017中国工业软件发展白皮书》,在2016年全年,亚太地区工业软件市场规模为840亿美元,占全球总规模的23.8%,相较上年增长7.6%。北美为1370亿美元,占比38.8%,增长4.3%。欧洲为1144亿美元,占比32.3%,增长5.2%。可见欧美依然居主导,但亚太地区已成为工业软件市场的增长主力。

工业软件市场总体上稳中有升,面向行业的成套解决方案研发应用发展迅速,机械、航空、纺织等行业对设计、分析和测试等服务的集成和数据关系分析的需求,逐渐成为了工业软件发展的动力。在航空航天、轨道交通等重点行业的推动下,高端工业软件也有了一定发展。

技术趋势

每一次工业革命都伴随着更高效、更便捷机械的诞生,而即将发生的第四次工业革命则不会遵循前三次工业革命的规律,第四次工业革命追求的是机械可以存储、处理、共享信息,将从根本上改变工具、世界与人之间的关系。

基于云平台的PaaS服务将成为工业软件的重要发展模式

工业云服务的常见方式有工业SaaS(Software as a Service)云服务、工业IaaS(Infrastructure as a Service)云服务、工业PaaS(Platform as a Service)云服务等方式。

如果以IBM 软件架构师 Albert Barron 所说的披萨作比喻,IaaS——别人提供厨房、炉子和煤气,你使用这些基础设施来烤制你的披萨;PaaS——除了基础设施,别人还提供面饼,你只需要准备撒在披萨上的配料,让他帮你烤出来,换句话说,你只要设计披萨的味道,他人帮你实现你的设计;SaaS——别人帮你直接做好披萨,你要做的就是把披萨的成品包装一下,印上自己的标签卖出去。

PaaS方案是未来一段时间内工业软件的发展趋势。PaaS方案提供软件部署平台,抽象掉了硬件和操作系统细节,可以无缝地扩展。开发者只需要关注自己的业务逻辑,不需要关注底层。云计算中心以透明化的方式提供行业应用PaaS服务,对提升传统制造业的创新能力意义深远。

分布式传感器构建工业互联网底层架构

制造业的未来是智能制造。智能制造要求对制造系统的物理对象——人、机、物进行感知,感知以后进行分析,之后再做出科学的决策执行。状态的感知、实时的分析、科学的决策和精准的执行,第一步就是感知。要对外部世界进行感知,需要自动控制技术和传感技术。需要分析就需要工业云和大数据的处理平台,这些技术环节都是密不可分的,智能制造的所有环节都建立在生产状态感知的基础上,分布式传感器就是构建这个基础的核心。

智能传感器通过软件实现高精度信息采集,具有一定的编程自动化能力,实现这些功能,核心工业软件必不可少。

工业软件实现人工智能帮助企业实现数字驱动

互联网软件技术的发展和“深度学习”算法的出现,让人工智能有了超越人类的表现,其中最重要的原因就是大量可用数据的出现和计算能力的大幅提升,“深度学习”的突破更是让人工智能脱胎换骨。

区块链技术引爆制造业数字革命

在工业互联网时代,一台燃气轮机每天产生的数据量是全球所有推特文章的4倍,智能制造的核心不是产生这些数据,而是智能机器可以处理分析这些数据,并与其他类似的机器共享。与工业互联网相连的每一台机器的生产流程都会变得更加高效,并基于各自的改变返回互联网进行交流。

区块链相较于传统互联网技术的最大优势在于降低成本和提高效率,这些也是智能制造的焦点。虽然传统的“互联网+”时代已经尽可能地实现信息透明,但是基于电商的平台仍然是中介性质的单位,应用区块链技术可以减少诸如电商这样的中间环节,降低智能制造成本。

区块链还可以提高生产效率,区块链特有的P2P特性,使智能制造中的各种请求不必从中心系统一层一层向外传递,直接在智能设备之间进行信息交流,区块链减少系统流通的特点,本身就是提高工作效率的行为。

工业软件市场的发展

中商产业研究院发布的《2018-2022年中国工业软件行业前景及投资机会研究报告》显示,2017年中国工业软件行业市场规模达到1412.4亿元。在《中国制造2025》的大背景下,2018年中国工业软件市场规模预计将达到1622.8亿元,同比增长达到14.9%。在这样良好的大环境下,相信我国的工业软件产业将会快速发展。

软件定义一切

工业软件定义了产品功能,定义了企业的流程,定义了生产方式,定义了企业的创新能力,最后,软件定义了整个制造业的生态。

软件定义产品功能

上个世纪80年代,软件定义了计算机功能。2006年业界提出软件定义存储,软件定义服务器,软件定义网络,定义数据中心。智能手机的普及是软件定义的另一个里程碑。到如今,战斗机、特斯拉汽车等智能化产品,它们的功能是否强大,越来越取决于软件功能是否强大。

软件定义企业生产方式

软件定义企业生产方式体现在虚拟制造与实体制造的结合上,重构了传统的设计制造、测试、再制造的流程。工业软件实现了研发设计的仿真,测试与再设计的流程都可以在计算机中实现,产品功能达到要求后再实际生产,推动了生产方式的改变,加速了产品的更新换代,使产品可以持续优化。未来的愿景应该是实现人员、机器、物料、工艺、环境、产品等所有生产要素在虚拟空间中完整、实时、动态的响应。当然,这需要一段很长的路。

软件对生产方式的重新定义还体现在个性化定制上

软件定义了整个制造业的生态

如同三十年前的Wintel体系,如同十年前的iOS体系和安卓体系,制造业的未来形态智能制造也在形成自己的生态体系,西门子、英特尔等公司都在构筑自己的数据采集、设备互联、工业软件、云计算等系统,工业软件构筑的就是智能制造的产业生态。

软件是实现智能互联的第一推动力,未来社会必将是物物互联,前提就是软件深入社会每个角落,进入每个物理实体,未来是一个网络泛在的社会,人们甚至可以像拧开水龙头放水一样使用网络和知识,这一切都是软件的功劳。想象一下这个场景:产品、设备都加载了数字化信息,产品的生命周期带有产品的全部数据,人们可以远程工作,管理设备,操控所有的生产过程。达到了这样的智能制造的水平,社会的一切都将发生深刻的变化。这一切,都要被软件定义。



智能制造时代的MES,应该如何定义?

互联网智造

精准化、精细化、协同化是MES的重要特点,否则生产无法高效、高质的运行。那种通过凭经验、靠感觉进行计划制订、现场管理的信息化系统,称之为MES,从一定程度上讲是名不副实的。

在MES定义不严谨,理念不够与时俱进的情况下,在智能制造浪潮一浪高过一浪的今天,在制造企业亟待转型升级的期盼中,中国的MES市场应该如何发展?应该如何在摸索中前行?如何更好地支撑制造业对智能制造的需求?

除了在平台化、云计算、移动互联等计算机技术进行拓展应用以外,中国制造业使用的MES系统应以中国制造2025为宗旨,以精益生产为主线,以两化深度融合为突破口,参考德国工业4.0等先进理念,结合企业实际情况,建设基于工业3.0,面向工业4.0、体现CPS特点的智能MES系统,构建“生产精益化+设备自动化+管理信息化+人员高效化”的“新四化”智能车间,为制造企业智能化转型升级奠定坚实的基础。

在智能制造背景下,从功能上讲,将来的MES要体现出以下特点。

1回归本质

MES之所以叫制造执行系统,非常强调“执行”二字:一方面,将ERP的生产计划根据车间实际情况,将每一工序分解到每一设备、每一分钟精细执行,并实现透明化的精确管理;另一方面,在车间内部,形成计划排产、作业执行、数据采集、在制品管理、库存管理、质量管理等一个全闭环管理,环环紧扣,而非简单的一个数据库管理系统。

精准化、精细化、协同化是MES的重要特点,否则生产无法高效、高质的运行。那种通过凭经验、靠感觉进行计划制订、现场管理的信息化系统,称之为MES,从一定程度上讲是名不副实的。

2贯穿精益

在迈向工业4.0过程中,我们经常讲:“2.0补课,3.0普及,4.0示范”,那么2.0到底是要补什么,3.0到底是要普及什么?笔者认为,除了实现对自动化、数字化、网络化等这些大家能看到的软硬件装备以外,更重要的是补上、普及我们欠缺的工业文明,比如员工的技能、素养,企业管理的模式、方法以及社会上的契约精神、合作精神等等,而作为工业3.0最精华的精益生产,是制造业所必须补上、必须普及的重要部分。

在MES系统中一定要充分体现精益生产的理念,通过MES这个信息化手段与工具,促进精益生产在企业中的进一步落地,比如:

  • 准确分析非增值劳动,提高生产效率、进行有效质量管理、降低生产库房、工具等辅助成本。

  • 科学准确自动排产、合理解决紧急插单等问题、确保生产计划最优。

  • 实现目视化管理、信息最大程度透明化。

  • 生产过程控制,实现产品“流”的生产。

  • 实现生产数据及时、准确反馈,提供科学决策基础。

3体现CPS

德国人认为工业4.0是以智能制造为主导的第四次工业革命,通过CPS等先进手段,将制造业向智能化转型。

《中国制造2025》也是强调“以提质增效为中心,以加快新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向”。

我们从这些表述中可以看到,无论是德国工业4.0还是中国制造2025,均是以智能制造为主导(或者叫为方向),以CPS技术为技术手段。

作为智能制造核心的MES系统,必须要体现以CPS为特点的智能制造。

德国人认为:“在制造业领域,CPS系统包括智能机器、存储系统和生产设施,能够相互独立地自动交换信息、触发动作和控制。CPS将推动生产对象直接或借助互联网通过M2M(Machine to Machine,机器对机器)通信自主实现信息交换、运转和互相操控。”从本段**们可以了解到,对车间中的机床、机器人等各类数字化设备进行互联互通,就是德国人认为的CPS在车间的具体应用。

在工信部发布的《信息物理系统白皮书(2017)》中,工信部信软司副司长安筱鹏博士在序言《关于CPS的几点思考——CPS是什么?如何看?怎么干?》中明确指出:“由传感器、控制终端、组态软件、工业网络等构成的分布式控制系统(DCS)和数据采集与监控系统(SCADA)是系统级CPS,由数控机床、机器人、AGV小车、传送带等构成的智能生产线是系统级CPS,通过制造执行系统(MES)对人、机、物、料、环等生产要素进行生产调度、设备管理、物料配送、计划排产和质量监控而构成的智能车间也是系统级CPS。”从中可以看到,在智能化车间里,CPS并不神秘,具有互联互通功能的智能化生产线就是一种CPS,智能化的MES也是一种CPS,两者结合在一起,以数字化设备、设备互联互通系统、MES系统组成的整个智能化车间就是一个更高级的CPS系统。

因此,在MES中要体现CPS特点,车间中设备的互联互通是基础。

4智能是趋势

本次工业革命的核心就是智能制造,打造智能化车间,就是要在设备等物理实体、MES等赛博虚体中充分发挥自动化、数字化、网络化、智能化的优势,打造出虚实融合、具有CPS特色的智能化MES系统。

智能化MES系统将分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手,实现生产过程的自动化、数字化、网络化、智能化的管理与控制,完成智能互联互通,智能计划排产,智能生产协同,智能资源管理,智能质量控制和智能决策支持的各项功能。

5落地是关键

再好的MES平台和软件,没有结合工厂的实际规划,实施效果未必就好。不论之前再多的案例和经验,也必须具体落实在企业后,具体情况具体分析。企业实施一套MES系统,即便是理论再先进,软件再智能,但如果不能得到成功的应用,对企业而言,结果就是零,甚至是负数,因为这不但浪费了企业大量的人力、财力,而且还影响了企业的正常生产,并严重地打击了企业对信息化的热情与信心,这些损失对企业而言都是难以计量的。

作为智能制造的核心,MES在企业智能化转型升级中发挥着越来越重要的作用。但由于MES提出的年代久远,并随着工业4.0、智能制造等新理念日新月异的发展,MES的现有理念已经落后于时代的步伐。一方面,我们既要认真领会MES的真正内涵,挖掘出MES应有的价值;另一方面,我们一定不要拘泥于国外已有定义,要借鉴工业4.0等先进理念,结合中国制造业的现状,与时俱进,勇于提出我们自己的理念,将一些传统的精华、先进的理念融于MES系统中,使MES真正成为企业智能制造的核心使能系统,满足中国制造业智能化转型升级的需求。同时,也本着高要求、促发展的精神,促进MES市场的健康发展。




自主CAE是一场难了的梦

来源: 陆仲绩  知识自动化


近些日子,CAE之急重上眉梢。


先是有上海的朋友来要当年CAE平台资料,久远轶事;又有北京的朋友商讨CAE行业建设的产业建议,涅槃重生。


实际上,退休多年,总是想摆脱自主CAE崛起的神话故事。原本想将《自主CAE涅槃之火》那本书作为最后告别的话,说完了就可以扭头。那个时候,连最后的修改审稿都懒得去关注,总想尽快撇开CAE后营造退休后的自我天地。


事与愿违,我心依旧,我一直就没有迈过这个坎,时常关注CAE的发展和动向,特别是国内自主CAE的点滴进展,都会心动不已,我就会发现自己还是在原地没有挪窝。

现在实际上处于更好的时机,很多传统工业企业也在跃跃欲试。一个可以推动软件发展的产业链现在正在形成。由此,尝试着曲线绕道进入CAE的路线,如从大型工程机械入手,以前端的数据采集为切入点,尝试着建立一个工业软件的雏形。将数字化贯穿整个过程:实时采集、传输、云平台存储、数据挖掘、即时报警等,具备常规所没有的效能分析、能耗分析、故障统计等功能。在这个过程中,用户对象将串联整个生态环:前期设计、中期加工生产、后续维保、优化改进等相关业务的企业、科研院所等单位。


这是中国制造2025当下所涌现的一系列的实践,已经得到应用和同行认可,许多制定规范和标注的机构也在纷纷介入。

然而,创业之艰辛,创新之曲折,没有亲身经历过得人,是不会有这个体会的。同时,没有与众不同的核心技术,就难以体现出价值的。对于工业软件中不仅要有熟悉的行业背景,CAE更要求有各种实践经验和大量隐性的知识和判断。这个投入是天量的,全球最大的CAE厂商Ansys每年的研发投入在3亿美元左右,也就是每年投入20亿人民币。每年循环,持续如此。是不是会吓走多少壮志雄心的人。


但是这个山头再难,一个国家一个有志于制造强国的国家,却不能不迎头而上。CAE是整个工业软件系列中无可替代的嵌入式一环。CAE不仅要重视前端分析模拟,更应该关注后置的价值创造。中国制造2025的转型创新,离不开工业软件。模拟仿真的作为,是工业软件中了解产品所能创价值的核心工序。以网络化为工具实现数据的实时采集、传送、分析,在这基础上,准确快速进行产品故障预警和性能优化,甚至还要能预判部件寿命,其价值就精准凸显。工业转型创新需要数字化作为平台,经验规范都很重要,数值模拟仿真贯穿整个产品生命周期,作为智能化技术的核心支撑存在。其重要性,自然毋容置疑。由于所描述产品所处的环境,载荷和工况都是千变万化的,没有足够针对性的功能,往往会功亏一篑。

作为工业软件的自成系统,自然期盼有资金投入,而更应该关注产业形成的机制构成。行业中不乏得到巨资投入而至今没能成功商品化的案例。科院院所的成果,一旦成功转化,将会获得极大的生命力的延伸。日本有一家叫TechnoStar 软件,最初就是源于东京大学一个教授承担的国家项目,几年就闹腾得声名鹊起,至今仍然在CAE领域站得一席之地也算逍遥。


诡异的是,二十世纪八十年代,中国国内CAE最红火最热腾的那几年,恰是国内正“穷”的阶段;而现在国家各种制造项目风生水起、互联网+发展迅速的时候,CAE却落得郁郁寡欢、逐渐式微的局面。


当年在《自主CAE涅槃之火》一书中我所提到的“四步曲”,提到政府“有形之手”的引导不失为一种好方法好途径。科研和商业本是二个不同范畴,如果商业化不是其目标,就不要责怪其担当。要认可科研与创新本该就不是同一回事。科研是把金钱转化成为知识,主体是科研人员,与商业化无关;创新是把知识转化成为金钱,主体是企业家,与科研无关。前者由学术共同体评定,后者需市场和服务认可。市场的事情交由企业界来定夺,反映的是资本的意愿,因为市场有时候会不信任“有形之手”,这是市场不讨人喜欢的地方,而又是之所以能够生机勃勃之原因。

2008年金融危机之后,占据美国经济主导地位的制造业出现持续性衰退的现象,终于得到了美国政府的支持。随后欧洲债务危机,几经波折,欧元区经济实力最强的德国作为救助计划的最大出资方,不仅独善其身,而且“已经揭开了欧洲一体化的新篇章”,其最大的缘由莫过于德国的制造业撑起了坚固的实体经济基础。


教训深刻,百年制造强国的美国政府有所行动,民间递书:确保美国在高端制造业的领先地位;总统背书:启动“先进制造合作伙伴”计划。前后上下齐呼应,而计划的实施则选择以加强创新集群和环境建设为思路,以重点发展“发展共性设备和平台,重构先进制造业发展理念”。


美国政府的先进制造合作伙伴计划中,最值得注意的是,是将数值仿真软件系统作为切入点。正是CAE!万般宠爱独一身。

这一招,看似平淡无奇,实则画龙点睛。高明之处在与不拘泥于具体的工程行业和领域,由基础性应用软件开发作为巩固高端制造业地位的实际措施,确实不失为神来之笔;将知识生产、技术创新和制造业地位紧密结合起来,一条曲径通幽路,高端制造业的提振需要关键领域的核心技术,更需要重构先进制造业的发展理念。更出人意料的是该项计划由道氏化学公司董事长兼CEO Andrew Liveries和麻省理工学院校长Susan Hockfield共同领导实施。这种由联邦政府负责“买单”的形式,表达了由顶尖大学、最具有创新能力的制造商和联邦政府之间建立合作伙伴关系的目的,通过构筑官、产、学、研各方的紧密合作,而以产、学为统领,力求不断孕育知识更新和技术应用的面向市场模式创新,实现内生式联合振兴高端制造业发展的战略部署。


风乍起,一池老水皱。依然耿耿于怀,是舍弃不了这个我曾经敬仰、喜欢过,以及许许多多扶助过我的师长朋友、同事同行。而且,当下许多CAE坚持者还在黑暗中前行。中国制造强国之路,不是一个把梦幻变为现实的地方吗?未了之心,一直期待下去。




人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。



产业智能官  AI-CPS


用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链


长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、智能金融”、“智能零售”、“智能驾驶”、智能城市新模式:“财富空间“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”


官方网站:AI-CPS.NET



本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





  • 1
    点赞
  • 0
    评论
  • 9
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值