problem Ⅰ
53. Maximum Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
solution 1
class Solution {
public:
int maxSubArray(vector<int>& nums) {
vector<int> dp(nums.size(), 0);
dp[0] = nums[0];
int maxs = nums[0];
for(int i=1; i<nums.size(); i++){
dp[i] = nums[i] + (dp[i-1] > 0 ? dp[i-1] : 0);
maxs = max(dp[i], maxs);
}
return maxs;
}
};
time complexity
:
O
(
n
)
O(n)
O(n)
space complexity
:
O
(
n
)
O(n)
O(n)
solution 2 without dp array
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int currMax = 0, maxs = nums[0];
for(int x : nums){
currMax = max(currMax+x, x);
maxs = max(currMax, maxs);
}
return maxs;
}
};
time complexity
:
O
(
n
)
O(n)
O(n)
space complexity
:
O
(
1
)
O(1)
O(1)
problem Ⅱ
918. Maximum Sum Circular Subarray
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], …, nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Example 1:
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.
solution
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
int currMax=0, maxs=nums[0], currMin=0, mins=nums[0], total=0;
for(int x : nums){
currMax = max(currMax+x, x);
maxs = max(currMax, maxs);
currMin = min(currMin+x, x);
mins = min(currMin, mins);
total += x;
}
return maxs > 0 ? max(maxs, total-mins) : maxs;
}
};
time complexity
:
O
(
n
)
O(n)
O(n)
space complexity
:
O
(
1
)
O(1)
O(1)