文章目录
problem
63. Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and space is marked as 1 and 0 respectively in the grid.
Example 1:
Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
Example 2:
Input: obstacleGrid = [[0,1],[0,0]]
Output: 1
approach 1 DP
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp = vector<vector<int>>(m, vector<int>(n, 1));
if(obstacleGrid[0][0])return 0;//c1
if(m==n && n==1)return obstacleGrid[0][0]==1 ? 0 : 1;//c2
bool flag1 = false, flag2 = false;
for(int i=0; i<m; i++){
if(flag1) dp[i][0]=0;
if(obstacleGrid[i][0])
dp[i][0]=0,flag1=true;
}
for(int i=0; i<n; i++){
if(flag2) dp[0][i]=0;
if(obstacleGrid[0][i])
dp[0][i]=0,flag2=true;
}
if(min(m, n)==1 && (flag1 || flag2))return 0;//c3
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
if(obstacleGrid[i][j]){
dp[i][j]=0;
continue;
}
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
approach 2 DP merge two loop
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 1));
if(obstacleGrid[0][0])return 0;//c1
bool flag1 = false, flag2 = false;
int cnt=0;
int lens = min(m, n);
for(; cnt < lens; cnt++){
if(flag1)dp[cnt][0]=0;
if(flag2)dp[0][cnt]=0;
if(obstacleGrid[cnt][0])
dp[cnt][0]=0,flag1=true;
if(obstacleGrid[0][cnt])
dp[0][cnt]=0,flag2=true;
}
for(; cnt < m; cnt++){
if(flag1) dp[cnt][0]=0;
if(obstacleGrid[cnt][0])
dp[cnt][0]=0,flag1=true;
}
for(; cnt < n; cnt++){
if(flag2) dp[0][cnt]=0;
if(obstacleGrid[0][cnt])
dp[0][cnt]=0,flag2=true;
}
if(min(m, n)==1 && (flag1 || flag2))return 0;//c2
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
if(obstacleGrid[i][j]){
dp[i][j]=0;
continue;
}
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
approach 3 others dp
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
dp[0][1] = 1;
for(int i=1; i<=m; i++){
for(int j=1; j<=n; j++){
if(!obstacleGrid[i-1][j-1])
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m][n];
}
};
approach 4 others dp, less space
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<int> dp(n, 0);
dp[0]=1;
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(obstacleGrid[i][j]==1)
dp[j]=0;
else if(j > 0)
dp[j] += dp[j-1];
}
}
return dp[n-1];
}
};