每日一题 day 50(DP topic)

本文探讨了如何使用动态规划(DP)解决最小路径和问题,包括常规DP方法和空间优化版本。通过实例分析,展示了两种方法在求解64x64网格中从左上角到右下角的最短路径总和时的应用。第一种方法使用二维数组,而第二种方法仅用一维数组,以减少空间复杂度。
摘要由CSDN通过智能技术生成

problem

64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:
在这里插入图片描述

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 13111 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

approach 1DP

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> dp(m+1, vector<int>(n+1, 999));
        dp[0][1] = 0;
        for(int i=1; i<=m; i++){
            for(int j=1; j<=n; j++){
                dp[i][j] = grid[i-1][j-1] + min(dp[i-1][j], dp[i][j-1]);
            }
        }
        return dp[m][n];
    }
};

approach 2 DP less space

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<int> dp(n, 0);
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                if(j==0){
                    dp[j] += grid[i][j];
                }else{
                    if(dp[j]==0) dp[j] = dp[j-1] + grid[i][j];
                    else dp[j] = grid[i][j] + min(dp[j-1], dp[j]);
                }
            }
        }
        return dp[n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值