子集遍历:
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
for (int i = 0; i < (1 << n); i++) {
cout << i << "的子集有:";
for (int j = i; j; j = (j - 1) & i) {
cout << j << ' ';
}
cout << endl;
}
return 0;
}
输出结果:
4
0的子集有:
1的子集有:1
2的子集有:2
3的子集有:3 2 1
4的子集有:4
5的子集有:5 4 1
6的子集有:6 4 2
7的子集有:7 6 5 4 3 2 1
8的子集有:8
9的子集有:9 8 1
10的子集有:10 8 2
11的子集有:11 10 9 8 3 2 1
12的子集有:12 8 4
13的子集有:13 12 9 8 5 4 1
14的子集有:14 12 10 8 6 4 2
15的子集有:15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
时间复杂度为:O()
具体证明可参考二项式定理
枚举:
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, k;
cin >> n >> k;
vector<int> v;
for (int i = 0; i < n - k; i++) {
v.push_back(0);
}
for (int i = 0; i < k; i++) {
v.push_back(1);
}
do {
for (int i = 0; i < n; i++) {
cout << v[i];
}
cout << endl;
} while (next_permutation(v.begin(), v.end()));
return 0;
}
输出结果:
5 3
00111
01011
01101
01110
10011
10101
10110
11001
11010
11100