LangChain上使用huggingface的embedding模型(如jina-embeddings-v3)

一、背景知识

embedding将文本映射到稠密的向量空间中,方便存储和查询。
huggingface的embedding榜单
这里结合自己的应用场景,选择1b以下的embedding模型,综合考量下选择arkohut/jina-embeddings-v3
模型链接

下载
在这里插入图片描述
使用模型卡片提供的命令,用cmd下载(强烈建议使用SSH命令下载!!!!用http容易报错)
在这里插入图片描述
需要使用魔法上网才能下载。如果超时的话,也可以选择手动下载。注意下载后的文件名应该和网站上提供的一样。
在这里插入图片描述

二、jina功能

论文地址:
jina-embeddings-v3: Multilingual Embeddings With Task LoRA
在这里插入图片描述
它的创新点主要有:
1.支持的文本长度高达8192 tokens
2.可以进行Task-specific的embedding
3.检索失败时可以合成数据
4.用上了最新的技术,提高了性能

三、LangChain上部署

model_name = "E:\jina-embeddings-v3"
model_kwargs = {'device': 'cpu','trust_remote_code':True}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

完整代码可见
我的实战博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值