背包问题总结

目录

01背包问题

 朴素做法:

使用滚动数组进行优化:

完全背包问题

朴素做法: 

 使用滚动数组进行优化:

多重背包问题

多重背包的二进制优化方法

分组背包问题

总结


01背包问题

每件物品只能用0次或者1次

什么是背包问题?

背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。

 题目:

有 N 件物品和一个容量是 的背包。每件物品只能使用一次。

第 i 件物品的体积是 V_i,价值是 W_i

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式:

第一行两个整数,NV,用空格隔开,分别表示物品数量和背包容积。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤1000
0< V_i,W_i ≤ 1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

8

原题链接:2. 01背包问题 - AcWing题库

 朴素做法:

 用一个二维数组f[i][j]来存储,在不超过体积j的前提下,从前i个物品中选,能够得到的最大价值。

 当我们选择第i件物品时,仅有两种选法,选或者不选第i件物品。

  • 选第i件物品,相当于已经选择了第i件物品,再从中选择不超过j-v[i]的物品,对应的价值就是f[i-1][j-v[i]]+w[i]相当于,所以有前i-1件物品的价值可以推出第i件物品的价值。
  • 当不选第i件物品时,说明从前i-1件物品中选择更有价值,即f[i-1][j];

通过以上可以得出二维的递推公式f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);

由递推公式可以推出第i层物品是由第i-1层物品决定的。

参考代码:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1010;
int f[N][N];
int v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i-1][j];
            if(j>=v[i])
            {
                f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
            }
        }
    }
    int res=0;
    for(int i=0;i<=m;i++)res=max(res,f[n][i]);
    cout<<res<<endl;
    return 0;
}

我们还能进行优化吗?当然可以,可以用动态数组进行优化,但是没有必要。我们可以将二维优化为一维。但是我们如何进行优化呢?

假如我们将[i]这一层去掉,那么f[j]到底表示什么含义呢?f[j]其实表示的就是第i层的不超过体积j的最大价值,而我们实际上要的是从第i-1层的f[j]递推到下一层。为什么会出现这种情况呢?这是因为我们用二维数组时j是从小到大进行枚举状态(0~m).那么怎么解决呢?

其实我们可以从大到小枚举所有的j。对于一个二维f[i][j]如果从小到大进行枚举,得到一个第i层的f[i][j],可以是从第i-1层的f[i-1][j]或者f[i-1][j-v[i]],第i层的f[i][j+v[i]]是由i-1的f[i-1][j]或者f[i-1][j+v[i]],如果减到一维那么第i层的f[i][j+v[i]]是由上一层的f[i-1][j]更新过来的,而f[i-1][j]已经更新成了第i层的f[i][j],这样以来肯定会出错,如果从大到小枚举,前面一层的状态肯定没有用过,所以不会出现这样的问题。

可以得到一维的状态转移公式f[j]=max(f[j],f[j-v[i]]+w[i])

使用滚动数组进行优化:

参考代码:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1010;
int f[N];
int v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=v[i];j--)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

完全背包问题

完全背包问题和01背包问题不同的是每种物品有无限件。

题目:

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 V_i,价值是 W_i

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式:

第一行两个整数,NV,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 V_i,W_i,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤1000
0<V_i,W_i≤1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

10

原题链接:3. 完全背包问题 - AcWing题库

 分析:

我们要求的是怎样使不超过背包体积的情况下,且总价值最大的值。可以将f[i][j]的状态表示为,选0件第i件物品总体积不超过j的所有集合,选1件第i件物品不超过体积j的所有集合····直到体积不超过j为止。所以我们可以将其转换成多种情况,只要找出每种情况再求出它们的最大值即可。

  • 当我们选择0件第i件物品时,相当于从前i个物品中选总体积不超过j的方案的集合,因为我们没有选择第i件物品所以f[i][j]相当于f[i-1][j]。
  • 当我们选择k件第i件物品时,相当于k件i物品的状态已经确定,只需要让前i-1件选总体积不超过j-kv[i]的方案的集合最大即可。

所以我们只需要求所有情况的最大值即可。

f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2v[i]]+2w[i],···,f[i-1][j-kv[i]]+kw[i],····)

参考代码: 

#include<iostream>
 
using namespace std;
 
const int N = 1010;
 
int f[N][N];
int v[N],w[N];
 
int main(){
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++) cin>>v[i]>>w[i];
    for(int i = 1 ; i<=n ;i++){
        for(int j = 0 ; j<=m ;j++) {
            for(int k = 0 ; k*v[i]<=j ; k++)
                f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
        }
    }
 
    cout<<f[n][m]<<endl;
}

由于我们最终的表达式不仅含有i和j还有k,所以我们需要一个三重循环来求最大值,那么循环完就是10^9所以一定会超时。 所以怎么进行优化呢?

f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2v[i]]+2w[i],···,f[i-1][j-kv[i]]+kw[i],····)      (1)

f[i][j-v[i]]=max(f[i-1][j-v[i]],f[i-1][j-2v[i]]+w[i],f[i-1][j-3v[i]]+2w[i],···)                               (2)

我们让(1)式中j=j-v[i],我们可以得到(2)式,我们可以(1)式发现红色部分只是比(2)式红色部分每一项多了一个w[i],我们让(2)式左右两边加上w[i],这样我们就可以得到状态转移方程。

f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i]) 

通过对比01背包状态转移方程和完全背包的状态转移方程,只有i不同,所以我们仿照一维01背包进行优化时,只需要将j从大到小改成从小到大。

f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);    //01背包
f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i]);  //完全背包

朴素做法: 

#include<iostream>
using namespace std;
const int N=1010;
int f[N][N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i-1][j];
            if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
        }
    cout<<f[n][m]<<endl;
    return 0;
}

 使用滚动数组进行优化:

仿照01背包将j从小到大枚举

#include<iostream>
using namespace std;
const int N=1010;
int f[N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=v[i];j<=m;j++)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    cout<<f[m]<<endl;
    return 0;
}

多重背包问题

多重背包问题其实就是01背包问题的扩展。

题目: 

 N 种物品和一个容量是 的背包。

第 i 种物品最多有S_i件,每件体积是 V_i,价值是 W_i

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式:

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 V_i,W_i,S_i,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤100
0< V_i,W_i,S_i≤100

输入样例:

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 原题链接:4. 多重背包问题 I - AcWing题库

我们可以发现多重背包和01背包、完全背包不同的是第i件物品的限制,所以我们只需要在01背包的基础上再加一层循环来枚举第i层选择的所有情况

 参考代码:

#include<iostream>
using namespace std;
const int N=110;
int f[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int v,w,s;
        cin>>v>>w>>s;
        for(int j=m;j>=0;j--)
        {
            for(int k=1;k<=s&&k*v<=j;k++)
            {
                f[j]=max(f[j],f[j-k*v]+k*w);
            }
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

在这道题中因为我们的数据比较小,所以我们用O(n^3)的时间复杂度就可以通过,但是如果我们的数据改为:

数据范围:

0<N≤1000
0<V≤2000
0< V_i,W_i,S_i≤2000

如果还用O(n^3)的方法,10^9肯定会超时 ,所以我们怎么去优化呢?

原题链接:5. 多重背包问题 II - AcWing题库

多重背包的二进制优化方法

首先我们想的是如何将一个多重背包问题转换成一个0/1背包问题。假设我们第i种物品有s个,体积是v价值是w,我们可以将s个物品分成s份,每份最多有一个,那么我们就将一个问题转换成了0/1背包问题,如果我们直接拆,那么我们有2000个i种物品就拆成2000份,我们有1000种物品,那么就是2*10^6种情况,最后也是10^9,也会超时。如果我们能找到到一种拆法,让拆的物品份数足够少,那么我们就完成了优化。

比如我们的s=7,那么我们暴力的拆法是将7拆成7个1,如果我们想要让拆开的数的组数最小,我们可以用二进制的方法来表示,7=1+2+4,但这样同时也存在一个问题如何表示一个不是2的幂的一个数字,比如10,因为三个二进制数字最多只能表示到7,四个二进制数字又表示15又超过了10。我们可以这样计算所需二进制数的数量,每次减去一个2的幂,直到减到这个数是一个负数,那么此时表示的二进制数字一定能表示s份。这样我们就把s优化成了log_2S,时间复杂度就变成了1000*log_22000*2000约等于2*10^7,这样就完成了优化。

参考代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=2010;
int f[N];
int v,w,s;
int n,m;
struct Good
{
    int v,w;    
};
vector<Good> goods;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>v>>w>>s;
        for(int k=1;k<=s;k*=2)
        {
            s-=k;
            goods.push_back({k*v,k*w});
        }
        if(s>0)goods.push_back({s*v,s*w});
    }
    for(auto good:goods)
    {
        for(int j=m;j>=good.v;j--)
        {
            f[j]=max(f[j],f[j-good.v]+good.w);
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

分组背包问题

分组背包问题其实就是0/1背包问题的一个变种。0/1背包是第i种物品选择0/1个,分组背包问题是每组选择0/1个,不同点是每组物品有s个,我们要枚举0~s种情况。

题目:

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 V_i_j,价值是 W_i_j,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式:

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

  • 每组数据第一行有一个整数 S_i,表示第 i 个物品组的物品数量;
  • 每组数据接下来有 S_i行,每行有两个整数 V_i_j,W_i_j,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;

输出格式:

输出一个整数,表示最大价值。

数据范围:

0<N,V≤100
0<S_i≤100
0<V_i_j,W_i_j≤100

输入样例:

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8

原题链接: 9. 分组背包问题 - AcWing题库

 参考代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=110;
int f[N],v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
    {
        int s;
        cin>>s;
        for(int j=0;j<s;j++)cin>>v[j]>>w[j];
        for(int j=m;j>=0;j--)
        {
            for(int k=0;k<s;k++)
            {
                if(j>=v[k])f[j]=max(f[j],f[j-v[k]]+w[k]);
                //保证背包剩余的体积一定是大于0
            }
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

最后再解释一下为什么是i,j,k这个顺序进行枚举,不能是i,k,j这个顺序进行枚举吗?

  • 不能。

这里引用y总的解释,背包问题在优化完空间之后,循环顺序必须是物品、体积、决策。这里的第三维虽然看似是在循环物品,但其实是循环当前物品组中的决策:我是选第1个物品呢,还是选第2个物品呢,还是选第3个物品呢,以此类推。

总结

处理背包问题的一个思路:

处理背包问题的思路主要包括状态定义、状态转移和边界处理

1. 确定问题类型。背包问题分为01背包、完全背包和多重背包三种类型,需要根据具体问题的要求来选择对应的问题类型。

2. 确定状态。将问题抽象成"在选取若干种物品时,限制总重量/总体积的条件下,能获取到的最大价值",因此,背包问题的状态包括选择的物品编号和背包剩余容量(或已使用容量)。

3. 定义状态转移方程。状态转移方程即当前状态的最优值与之前的状态有何关联。具体来说,需要根据问题类型分别写出01背包、完全背包和多重背包的状态转移方程。

4. 确定边界条件。状态转移方程需要依赖于边界条件,对于背包问题而言,边界条件通常是背包容量为0时的最优值为0。

5. 计算答案。根据状态转移方程计算出最优值,即选取物品的最大价值。

以此类推,以上五步是处理所有背包问题的通用思路。

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无限酸奶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值