bzoj4883最小生成环套树森林
Description
在一个n*m的棋盘上要放置若干个守卫。对于n行来说,每行必须恰好放置一个横向守卫;同理对于m列来说,每列
必须恰好放置一个纵向守卫。每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个守卫,一个守卫
不能同时兼顾行列的防御。请计算控制整个棋盘的最小代价。
Input
第一行包含两个正整数n,m(2<=n,m<=100000,n*m<=100000),分别表示棋盘的行数与列数。
接下来n行,每行m个正整数
其中第i行第j列的数w[i][j](1<=w[i][j]<=10^9)表示在第i行第j列放置守卫的代价。
Output
输出一行一个整数,即占领棋盘的最小代价。
Sample Input
3 4
1 3 10 8
2 1 9 2
6 7 4 6
1 3 10 8
2 1 9 2
6 7 4 6
Sample Output
19
HINT
在(1,1),(2,2),(3,1)放置横向守卫,在(2,1),(1,2),(3,3),(2,4)放置纵向守卫。
题解:假如把a[i][j]看作i->j的边,那么得到的显然会是一个环套树森林。
HINT
在(1,1),(2,2),(3,1)放置横向守卫,在(2,1),(1,2),(3,3),(2,4)放置纵向守卫。
题解:假如把a[i][j]看作i->j的边,那么得到的显然会是一个环套树森林。
那么就跑最小生成树,然后记录每个点所在连通块是树还是图即可。
假如要合并i,j
如果ij都是图了,那么就没办法咯。
不然,i,j在同一个集合时加入这条边即可 树->图 ; 不在同一个集合的话,就把他们并起来,然后判断得到的是一个什么图形。
如果原来是树+树,得到树,树+图得到图。
最终就相当于在n+m个点组成的图中,找n+m条边,组成一个最小环。
最终就相当于在n+m个点组成的图中,找n+m条边,组成一个最小环。
复杂度nmlog(nm)
bzoj4886
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int pre[100010],c,n,m,vis[100010];
void init(){for(int i=1;i<=n+m;i++)pre[i]=i;}
int findd(int x)
{
if(x==pre[x])return x;
return pre[x]=findd(pre[x]);
}
struct node{int a,b,c,next;}edge[200010];int cnt=0;
void add(int a,int b,int c){edge[cnt].a=a;edge[cnt].b=b;edge[cnt++].c=c;}
bool cmp(node p1,node p2){return p1.c<p2.c;}
int main()
{
scanf("%d%d",&n,&m);init();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){scanf("%d",&c);add(i,j+n,c);}
sort(edge,edge+cnt,cmp);ll ans=0,sum=0;;
for(int i=0;i<cnt;i++)
{
node e=edge[i];
int a=findd(e.a),b=findd(e.b);
if(vis[a]&&vis[b])continue;
if(a==b){vis[a]=1;}
else{pre[a]=b,vis[b]|=vis[a];}
sum++;ans+=e.c;if(sum==n+m)break;
}
printf("%lld\n",ans);
return 0;
}
bzoj4886
我们对于a,b离散后建点,那么一个卡片就相当于a到b有一条边。
现在要给边定向,使得每个点入度均为1。(并查集的操作)
贡献=每个点出度*该点权值
bzoj4883的时候谈过,这样的连通块要么是环套树要么是树。
肯定都有的一部分贡献是(deg[i]-1)*a[i](总度数-入度)*权值
对于树,存在一个节点没有入度,所以我们并查集的时候找到连通块中权值最大的即可。
对于环套树,每个点都必须有入度,那么就直接统计。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const ll INFF=0x3f3f3f3f3f3f3f3f;
const double pi=acos(-1.0);
const double eps=1e-9;
ll a[250010],b[250010],node[500010],pre[500010],maxx[500010],num[500010],vis[500010];
int findd(int x)
{
if(x==pre[x])return x;
return pre[x]=findd(pre[x]);
}
int main()
{
int n;scanf("%d",&n);int cnt=1;
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i],&b[i]);
node[cnt++]=a[i],node[cnt++]=b[i];
}
sort(node+1,node+cnt);int cntt=2;
for(int i=2;i<cnt;i++)if(node[i]!=node[i-1])node[cntt++]=node[i];cnt=cntt;
for(int i=1;i<cnt;i++)maxx[i]=node[i],pre[i]=i;
for(int i=1;i<=n;i++)
{
int x=lower_bound(node+1,node+cnt,a[i])-node;
int y=lower_bound(node+1,node+cnt,b[i])-node;
num[x]++,num[y]++;x=findd(x),y=findd(y);
if(x==y)vis[x]=1;
else{pre[y]=x;vis[x]|=vis[y];maxx[x]=max(maxx[x],maxx[y]);}
}ll ans=0;
for(int i=1;i<cnt;i++)
{
ans+=(num[i]-1)*node[i];
if(pre[i]==i&&!vis[i])ans+=maxx[i];
}
printf("%lld\n",ans);
return 0;
}