第八周项目一-实现复数类的运算符重载(3)

(3)定义一个定义完整的类(是可以当作独立的产品发布,成为众多项目中的“基础工程”)。这样的类在(2)的基础上,扩展+、-、*、/运算符的功能,使之能与double型数据进行运算。设Complex c; double d; c+d和d+c的结果为“将d视为实部为d的复数同c相加”,其他-、*、/运算符类似。

参考解答:

 

/* All rights reserved.
 * 文件名称:test.cpp
 * 作者:陈丹妮
 * 完成日期:2015年 5 月 11 日
 * 版 本 号:v1.0
 */

#include <iostream>
using namespace std;
class Complex
{
public:
    Complex()
    {
        real=0;
        imag=0;
    }
    Complex(double r,double i)
    {
        real=r;
        imag=i;
    }
    friend Complex operator+(Complex &c1, Complex &c2);
    friend Complex operator+(double d1, Complex &c2);
    friend Complex operator+(Complex &c1, double d2);
    friend Complex operator-(Complex &c1, Complex &c2);
    friend Complex operator-(double d1, Complex &c2);
    friend Complex operator-(Complex &c1, double d2);
    friend Complex operator*(Complex &c1, Complex &c2);
    friend Complex operator*(double d1, Complex &c2);
    friend Complex operator*(Complex &c1, double d2);
    friend Complex operator/(Complex &c1, Complex &c2);
    friend Complex operator/(double d1, Complex &c2);
    friend Complex operator/(Complex &c1, double d2);
    void display();
private:
    double real;
    double imag;
};

//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
Complex operator+(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real+c2.real;
    c.imag=c1.imag+c2.imag;
    return c;
}
Complex operator+(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c+c2; //按运算法则计算的确可以,但充分利用已经定义好的代码,既省人力,也避免引入新的错误,但可能机器的效率会不佳
}
Complex operator+(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1+c;
}
//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex operator-(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real-c2.real;
    c.imag=c1.imag-c2.imag;
    return c;
}
Complex operator-(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c-c2;
}
Complex operator-(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1-c;
}

//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex operator*(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real*c2.real-c1.imag*c2.imag;
    c.imag=c1.imag*c2.real+c1.real*c2.imag;
    return c;
}
Complex operator*(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c*c2;
}
Complex operator*(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1*c;
}

//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex operator/(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    return c;
}
Complex operator/(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c/c2;
}
Complex operator/(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1/c;
}

void Complex::display()
{
    cout<<"("<<real<<","<<imag<<"i)"<<endl;
}

int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    double d=11;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    cout<<"d="<<d<<endl<<endl;
    cout<<"下面是重载运算符的计算结果: "<<endl;
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    cout<<"c1+d=";
    (c1+d).display();
    cout<<"d+c1=";
    (d+c1).display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    cout<<"c1-d=";
    (c1-d).display();
    cout<<"d-c1=";
    (d-c1).display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    cout<<"c1*d=";
    (c1*d).display();
    cout<<"d*c1=";
    (d*c1).display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    cout<<"c1/d=";
    (c1/d).display();
    cout<<"d/c1=";
    (d/c1).display();
    return 0;
}

学习心得:觉得用了运算符的重载之后,像复数类的这种形式的数,就很简单了,好开心,又获得了一个新的方法,继续加油吧

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值