(3)定义一个定义完整的类(是可以当作独立的产品发布,成为众多项目中的“基础工程”)。这样的类在(2)的基础上,扩展+、-、*、/运算符的功能,使之能与double型数据进行运算。设Complex c; double d; c+d和d+c的结果为“将d视为实部为d的复数同c相加”,其他-、*、/运算符类似。
参考解答:
/* All rights reserved.
* 文件名称:test.cpp
* 作者:陈丹妮
* 完成日期:2015年 5 月 11 日
* 版 本 号:v1.0
*/
#include <iostream>
using namespace std;
class Complex
{
public:
Complex()
{
real=0;
imag=0;
}
Complex(double r,double i)
{
real=r;
imag=i;
}
friend Complex operator+(Complex &c1, Complex &c2);
friend Complex operator+(double d1, Complex &c2);
friend Complex operator+(Complex &c1, double d2);
friend Complex operator-(Complex &c1, Complex &c2);
friend Complex operator-(double d1, Complex &c2);
friend Complex operator-(Complex &c1, double d2);
friend Complex operator*(Complex &c1, Complex &c2);
friend Complex operator*(double d1, Complex &c2);
friend Complex operator*(Complex &c1, double d2);
friend Complex operator/(Complex &c1, Complex &c2);
friend Complex operator/(double d1, Complex &c2);
friend Complex operator/(Complex &c1, double d2);
void display();
private:
double real;
double imag;
};
//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
Complex operator+(Complex &c1, Complex &c2)
{
Complex c;
c.real=c1.real+c2.real;
c.imag=c1.imag+c2.imag;
return c;
}
Complex operator+(double d1, Complex &c2)
{
Complex c(d1,0);
return c+c2; //按运算法则计算的确可以,但充分利用已经定义好的代码,既省人力,也避免引入新的错误,但可能机器的效率会不佳
}
Complex operator+(Complex &c1, double d2)
{
Complex c(d2,0);
return c1+c;
}
//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex operator-(Complex &c1, Complex &c2)
{
Complex c;
c.real=c1.real-c2.real;
c.imag=c1.imag-c2.imag;
return c;
}
Complex operator-(double d1, Complex &c2)
{
Complex c(d1,0);
return c-c2;
}
Complex operator-(Complex &c1, double d2)
{
Complex c(d2,0);
return c1-c;
}
//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex operator*(Complex &c1, Complex &c2)
{
Complex c;
c.real=c1.real*c2.real-c1.imag*c2.imag;
c.imag=c1.imag*c2.real+c1.real*c2.imag;
return c;
}
Complex operator*(double d1, Complex &c2)
{
Complex c(d1,0);
return c*c2;
}
Complex operator*(Complex &c1, double d2)
{
Complex c(d2,0);
return c1*c;
}
//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex operator/(Complex &c1, Complex &c2)
{
Complex c;
c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
return c;
}
Complex operator/(double d1, Complex &c2)
{
Complex c(d1,0);
return c/c2;
}
Complex operator/(Complex &c1, double d2)
{
Complex c(d2,0);
return c1/c;
}
void Complex::display()
{
cout<<"("<<real<<","<<imag<<"i)"<<endl;
}
int main()
{
Complex c1(3,4),c2(5,-10),c3;
double d=11;
cout<<"c1=";
c1.display();
cout<<"c2=";
c2.display();
cout<<"d="<<d<<endl<<endl;
cout<<"下面是重载运算符的计算结果: "<<endl;
c3=c1+c2;
cout<<"c1+c2=";
c3.display();
cout<<"c1+d=";
(c1+d).display();
cout<<"d+c1=";
(d+c1).display();
c3=c1-c2;
cout<<"c1-c2=";
c3.display();
cout<<"c1-d=";
(c1-d).display();
cout<<"d-c1=";
(d-c1).display();
c3=c1*c2;
cout<<"c1*c2=";
c3.display();
cout<<"c1*d=";
(c1*d).display();
cout<<"d*c1=";
(d*c1).display();
c3=c1/c2;
cout<<"c1/c2=";
c3.display();
cout<<"c1/d=";
(c1/d).display();
cout<<"d/c1=";
(d/c1).display();
return 0;
}
学习心得:觉得用了运算符的重载之后,像复数类的这种形式的数,就很简单了,好开心,又获得了一个新的方法,继续加油吧