备战数学建模42-缺失值和异常值的处理方法(攻坚战6)

在数据建模中,对给出的数据进行预测处理是很重要的,当然一般考虑有归一化或者规范化等方法对数据进行预处理,这都是在数据完整和没有异常的情况下,需要考虑的。当数据量非常大的时候,往往容易出现数据缺失或者异常的现象,如果数据有确实或者有异常值,我们需要对对缺失值和异常值进行处理。

目录

一、数据预处理

1.1、处理缺失值

1.2、处理异常值

1.3、Matlab处理缺失值和异常值


一、数据预处理

1.1、处理缺失值

对于数据确实问题,如果确实量非常大,比如缺失数据达到该项总体数据的40%,就可以考虑直接将该项数据删除,直接不考虑该项指标。

如果缺失的数据比较少,对个体精度要求不高,可以使用均值和众数的方式补全数据。如果对精度要求较高,可以使用牛顿插值法或者样条插值,当然基本上都是用样条插值。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值