引言
在人工智能的发展历程中,模型的大小和性能一直是研究者关注的焦点。微软最新推出的Orca 2模型,以其较小的体积却展现出媲美大型模型的推理能力,引领了一个全新的研究方向。
-
Huggingface模型下载:https://huggingface.co/microsoft/Orca-2-13b
-
AI快站模型免费加速下载:https://aifasthub.com/models/microsoft/Orca-2-13b
Orca 2的诞生
Orca 2是微软研究院最新推出的语言模型,继承了其前身Orca的强大推理能力。Orca 2的设计理念是利用大规模语言模型的知识来教导较小规模的模型,从而提升其推理能力。这种方法使Orca 2在训练信号的改进上取得了突破性进展。
技术革新
Orca 2在设计上采用了多种推理技巧,如逐步推理、先回忆再生成、回忆-推理-生成等,这些技巧使得Orca 2能够为每个任务确定最有效的解决策略。这种“谨慎推理”方法的核心在于不仅仅模仿更强大的模型,而是让小型模型根据任务需求灵活选择解决策略。
性能评估
在多达15个不同基准的评估中,Orca 2表现出色。在零样本学习环境中,Orca 2的推理能力明显超越了相似规模的模型,并在某些任务中达到了与其体量5-10倍的大型模型相似或更好的性能水平。