DeepSeek-Prover-V2是由中国深度求索(DeepSeek)团队推出的开源数学推理大模型,包含6710亿参数(671B)和70亿参数(7B)两个版本。该模型专攻数学形式化证明,支持将自然语言问题转化为Lean 4代码并完成逻辑严谨的定理验证,在MiniF2F-test评测中通过率高达88.9%,刷新了AI数学推理的行业纪录。
核心能力亮点:
- 超长推理链处理:支持163,840 tokens的上下文窗口,可拆解数学奥赛题至20+引理步骤;
- 双模式解题:快速模式直接生成代码答案,逻辑模式分步拆解推理过程;
- 低成本部署:7B版本可在RTX 4090显卡运行,推理速度达60 tokens/秒;
AI快站限时免费体验地址:
https://chat.aifasthub.com/
AI快站下载:
https://aifasthub.com/deepseek-ai/DeepSeek-Prover-V2-671B
数据解读DeepSeek-Prover-V2的强大
DeepSeek-Prover-V2的卓越性能并非偶然,其背后是多项技术创新和海量数据训练的支撑。
惊人的性能:MiniF2F测试集88.9%通过率
衡量一个数学证明模型的性能,权威的基准测试是关键。在备受关注的 MiniF2F-test 测试集(一个包含奥林匹克级别数学问题的集合)上,DeepSeek-Prover-V2 取得了高达88.9%的通过率!这是一个非常了不起的成绩,意味着该模型能够成功解决绝大多数具有挑战性的形式化数学问题。
例如,在包含488个问题的MiniF2F-test上,DeepSeek-Prover-V2利用其递归证明搜索策略,能够解决434个问题,这一数据充分证明了其在解决复杂数学难题方面的强大实力。
此外,在另一个具有挑战性的 PutnamBench 数据集(包含来自著名的Putnam数学竞赛的问题)上,DeepSeek-Prover-V2 能够解决658个问题中的49个。在更侧重于实际证明场景的 ProofNet 测试集上,该模型在 Pass@1024 指标下实现了 37.1% 的解题率。这些数据共同描绘了DeepSeek-Prover-V2在不同难度和类型的数学问题上的全面能力。
超大规模与先进架构:6710亿参数与MoE设计
DeepSeek-Prover-V2 拥有惊人的 6710亿参数,这使其能够学习和存储海量的数学知识和推理模式。该模型基于 DeepSeek-V3 架构,并采用了先进的混合专家(Mixture-of-Experts, MoE)设计。
具体来说,在其MoE层中,包含了256个路由专家(routing experts)和1个共享专家(shared expert)。在推理过程中,每个token会激活8个专家进行计算。这种设计允许模型在保持巨大参数规模的同时,有效控制推理时的计算量,实现了性能与效率的平衡。
强大的长程推理能力:支持163,840 tokens上下文
数学证明往往涉及冗长而复杂的推理链条。DeepSeek-Prover-V2 支持高达 163,840个tokens的上下文长度,这意味着它可以处理非常长的数学问题描述、背景知识和中间推理步骤,而不会轻易丢失关键信息。这对于解决需要多步推导的复杂定理至关重要。
创新的训练方法:递归定理证明与强化学习
为了提升模型的证明能力,DeepSeek-Prover-V2 采用了创新的训练方法。研发团队设计了一个递归定理证明流程(recursive theorem-proving process),让模型能够像人类数学家一样,将复杂问题分解为子问题,并逐步解决。
更重要的是,该模型还引入了强化学习(Reinforcement Learning)技术。通过将非形式化的数学推理(人类的直觉和草稿)与形式化的证明过程相结合,模型能够在统一的框架下学习和优化其证明策略。这种方法使得模型不仅能理解形式化语言的严谨性,也能借鉴人类解决问题时的灵活性和创造性。
全新的评测基准:ProverBench
为了更全面、更准确地评估数学证明模型的能力,DeepSeek团队还推出了一个全新的评测基准——ProverBench。该基准包含了325个精选的形式化问题,这些问题来源于奥林匹克竞赛、数学出版物以及专门为AI设计的证明题,覆盖了数论、代数、几何等多个数学分支。ProverBench的提出,为该领域的研究者提供了一个更具挑战性和代表性的评估平台。
架构浅析:MoE如何赋能数学推理?
如前所述,DeepSeek-Prover-V2的核心架构优势之一在于其混合专家(MoE)设计。简单来说,MoE可以将一个庞大的神经网络拆分成多个相对较小的“专家网络”。当输入数据(在这里是数学问题或证明步骤)到来时,一个“门控网络”(gating network)会判断哪些专家最擅长处理当前任务,然后将任务分配给这些被选中的专家。
在DeepSeek-Prover-V2中,每层有256个路由专家和1个共享专家。共享专家负责处理一些通用的模式,而路由专家则各自专精于不同类型的数学知识或推理技巧。推理时仅激活8个专家,大大减少了计算负载,使得如此庞大的模型也能在可接受的时间内完成推理。这种“各司其职、协同作战”的方式,使得模型能够更高效地学习和应用广泛的数学知识。
应用场景与未来展望
DeepSeek-Prover-V2的出现,为数学研究和教育带来了广阔的应用前景:
- 辅助数学家进行定理证明:自动生成证明思路、补全证明步骤、验证证明的正确性,从而加速科研进程。
- 数学教育:作为智能导师,为学生提供个性化的解题辅导和证明演示。
- 形式化验证:在软件工程、硬件设计等领域,用于验证系统和算法的正确性与安全性。
- 推动AI自身发展:数学推理是通用人工智能的关键能力之一,DeepSeek-Prover-V2的进展将为更高级AI系统的研发提供借鉴。
未来,随着模型能力的进一步提升和优化,我们有理由相信,AI将在解决更深奥的数学猜想、发现新的数学定理方面发挥越来越重要的作用,甚至可能带来数学研究范式的革新。
AI快站下载:
https://aifasthub.com/deepseek-ai/DeepSeek-Prover-V2-671B