AI工作流目前市面上比较火的,有字节的扣子,有Dify.ai。基于langchain的可视化工作流,有langflow,还有flowise等等,目前笔者只体验了这几款,如果还有其他的还望大家告诉笔者体验。
今天体验了一下flowise,感觉还可以,个人感觉比dify和扣子更加的原子化了,完全跟随langchain的设计理念了,但是感觉逻辑还是很清晰的,比如使用某一个组件,需要依赖哪些组件,都会很清晰的标识出来,你只需要选择不同的组件。比如某一个agent依赖chat model,你只需要在chat model分类里,找你到你想依赖的model,如chatopenai、chatollama等等。
安装
安装可以参考官方文档 FlowiseAI/Flowise: Drag & drop UI to build your customized LLM flow (github.com)
我选择第二种docker,会简单一点。
首先需要将代码clone下来
git clone https://github.com/FlowiseAI/Flowise.git
之后进入到docker文件夹中,将.env.example
文件复制一份,重命名成.env
文件内容如下。
PORT=3000
DATABASE_PATH=/root/.flowise
APIKEY_PATH=/root/.flowise
SECRETKEY_PATH=/root/.flowise
LOG_PATH=/root/.flowise/logs
BLOB_STORAGE_PATH=/root/.flowise/storage
端口号和路径你可以自行选择是否修改。
启动的话可以选择使用docker-compose或者docker。
- docker-compose使用下面的命令
docker-compose up -d
如果需要停止,可以使用下面的命令
docker-compose stop
有些机器可能安装了docker,并没有安装docker-compose。
可以使用这个命令安装。将v2.28.1改成你想安装的版本号。
sudo curl -L https://github.com/docker/compose/releases/downloa